The bulk thermal conductivity of Stillinger-Weber (SW) wurtzite GaN in the [0001] direction at a temperature of 300 K is calculated using equilibrium molecular dynamics (EMD), non-equilibrium MD (NEMD), and lattice dynamics (LD) methods. While the NEMD method predicts a thermal conductivity of 166 ± 11 W/m·K, both the EMD and LD methods predict thermal conductivities that are an order of magnitude greater. We attribute the discrepancy to significant contributions to thermal conductivity from long-mean free path phonons. We propose that the Grüneisen parameter for low-frequency phonons is a good predictor of the severity of the size effects in NEMD thermal conductivity prediction. For weakly anharmonic crystals characterized by small Grüneisen parameters, accurate determination of thermal conductivity by NEMD is computationally impractical. The simulation results also indicate the GaN SW potential, which was originally developed for studying the atomic-level structure of dislocations, is not suitable for prediction of its thermal conductivity.

1.
J. C.
Johnson
,
H. J.
Choi
,
K. P.
Knutsen
,
R. D.
Schaller
,
P. D.
Yang
, and
R. J.
Saykally
,
Nat. Mater.
1
,
106
(
2002
).
2.
Z. H.
Zhong
,
F.
Qian
,
D. L.
Wang
, and
C. M.
Lieber
,
Nano Lett.
3
,
343
(
2003
).
3.
H. M.
Kim
,
Y. H.
Cho
,
H.
Lee
,
S. I.
Kim
,
S. R.
Ryu
,
D. Y.
Kim
,
T. W.
Kang
, and
K. S.
Chung
,
Nano Lett.
4
,
1059
(
2004
).
4.
F.
Qian
,
Y.
Li
,
S.
Gradecak
,
D. L.
Wang
,
C. J.
Barrelet
, and
C. M.
Lieber
,
Nano Lett.
4
,
1975
(
2004
).
5.
Y.
Huang
,
X. F.
Duan
,
Y.
Cui
, and
C. M.
Lieber
,
Nano Lett.
2
,
101
(
2002
).
6.
H. J.
Choi
,
J. C.
Johnson
,
R. R.
He
,
S. K.
Lee
,
F.
Kim
,
P.
Pauzauskie
,
J.
Goldberger
,
R. J.
Saykally
, and
P. D.
Yang
,
J. Phys. Chem. B
107
,
8721
(
2003
).
7.
V. M.
Asnin
,
F. H.
Pollak
,
J.
Ramer
,
M.
Schurman
, and
I.
Ferguson
,
Appl. Phys. Lett.
75
,
1240
(
1999
).
8.
C. Y.
Luo
,
H.
Marchand
,
D. R.
Clarke
, and
S. P.
DenBaars
,
Appl. Phys. Lett.
75
,
4151
(
1999
).
9.
D. I.
Florescu
,
V. M.
Asnin
,
F. H.
Pollak
,
A. M.
Jones
,
J. C.
Ramer
,
M. J.
Schurman
, and
I.
Ferguson
,
Appl. Phys. Lett.
77
,
1464
(
2000
).
10.
G. A.
Slack
,
L. J.
Schowalter
,
D.
Morelli
, and
J. A.
Freitas
,
J. Cryst. Growth
246
,
287
(
2002
).
11.
A.
Jeżowski
,
B. A.
Danilchenko
,
M.
Boćkowski
,
I.
Grzegory
,
S.
Krukowski
,
T.
Suski
, and
T.
Paszkiewicz
,
Solid State Commun.
128
,
69
(
2003
).
12.
H.
Shibata
,
Y.
Waseda
,
H.
Ohta
,
K.
Kiyomi
,
K.
Shimoyama
,
K.
Fujito
,
H.
Nagaoka
,
Y.
Kagamitani
,
R.
Simura
, and
T.
Fukuda
,
Mater. Trans.
48
,
2782
(
2007
).
13.
J. P.
Plummer
,
M.
Deal
, and
P. D.
Griffin
,
Silicon VLSI Technology: Fundamentals, Practice, and Modeling
(
Prentice Hall
,
Upper Saddle River, NJ
,
2000
).
14.
X. W.
Zhou
,
S.
Aubry
,
R. E.
Jones
,
A.
Greenstein
, and
P. K.
Schelling
,
Phys. Rev. B
79
,
115201
(
2009
).
15.
T.
Kawamura
,
Y.
Kangawa
, and
K.
Kakimoto
,
J. Cryst. Growth
284
,
197
(
2005
).
16.
L.
Lindsay
,
D. A.
Broido
, and
T. L.
Reinecke
,
Phys. Rev. Lett.
109
,
095901
(
2012
).
17.
D. P.
Sellan
,
E. S.
Landry
,
J. E.
Turney
,
A. J. H.
McGaughey
, and
C. H.
Amon
,
Phys. Rev. B
81
,
214305
(
2010
).
18.
A.
Bere
and
A.
Serra
,
Phys. Rev. B
65
,
205323
(
2002
).
19.
W.
Gian
,
M.
Skowronski
, and
G. R.
Rohrer
, in
Symposium E- III-Nitride, SiC, and Diamond Materials for Electronic
, edited by
C. D.
Brandt
,
D. K.
Gaskill
, and
R. J.
Nemanich
(
Mater. Res. Soc. Symp. Proc.
,
1996
), Vol.
423
, p.
475
.
20.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation
(
Academic Press
,
San Diego
,
2002
), pp.
75
and 90.
21.
H. J. C.
Berendsen
,
J. P. M.
Postma
,
W. F.
Van Gunsteren
,
A.
Di Nola
, and
J. R.
Haak
,
J. Chem. Phys.
81
,
3684
(
1984
).
22.
P.
Jund
and
R.
Jullien
,
Phys. Rev. B
59
,
13707
(
1999
).
23.
P. K.
Schelling
,
S. R.
Phillpot
, and
P.
Keblinski
,
Phys. Rev. B
65
,
144306
(
2002
).
24.
L.
Hu
,
W. J.
Evans
, and
P.
Keblinski
,
J. Appl. Phys.
110
,
113511
(
2011
).
25.
Y.
He
,
I.
Savic
,
D.
Donadio
, and
G.
Galli
,
Phys. Chem. Chem. Phys.
14
,
16209
(
2012
).
26.
S.
Srinivasan
and
R. S.
Miller
,
Numer. Heat Transfer, Part B
52
,
297
(
2007
).
27.
Y.
Chen
,
J. Chem. Phys.
124
,
054113
(
2006
).
28.
E. S.
Landry
,
M. I.
Hussein
, and
A. J. H.
McGaughey
,
Phys. Rev. B
77
,
184302
(
2008
).
29.

As opposed to the commonly used relaxation time approximation, the full solution of the BTE does not treat normal phonon-phonon scattering processes as resistive.

30.
D. A.
Broido
,
M.
Malorny
,
G.
Birner
,
N.
Mingo
, and
D. A.
Stewart
,
Appl. Phys. Lett.
91
,
231922
(
2007
).
31.
M.
Omini
and
A.
Sparavigna
,
Phys. Rev. B
53
,
9064
(
1996
).
32.
J. E.
Turney
,
E. S.
Landry
,
A. J. H.
McGaughey
, and
C. H.
Amon
,
Phys. Rev. B
79
,
064301
(
2009
).
33.
A.
Jain
and
A. J. H.
McGaughey
,
J. Appl. Phys.
116
,
073503
(
2014
).
34.
J. C.
Slater
,
Introduction to Chemical Physics
(
McGraw Hill
,
New York
,
1939
), p.
239
.
35.
P. G.
Klemens
, in
Solid State Physics
, edited by
F.
Seitz
and
D.
Turnbull
(
Academic
,
New York
,
1958
), Vol.
7
.
36.
D.
Kotchetkov
,
J.
Zou
,
A. A.
Balandin
,
D. I.
Florescu
, and
F. H.
Pollak
,
Appl. Phys. Lett.
79
,
4316
(
2001
).
You do not currently have access to this content.