An experimental demonstration of the combined photovoltaic (PV) and thermoelectric conversion of concentrated sunlight (with concentration factor, X, up to ∼300) into electricity is presented. The hybrid system is based on a multi-junction PV cell and a thermoelectric generator (TEG). The latter increases the electric power of the system and dissipates some of the excessive heat. For X ≤ 200, the system's maximal efficiency, ∼32%, was mostly due to the contribution from the PV cell. With increasing X and system temperature, the PV cell's efficiency decreased while that of the TEG increased. Accordingly, the direct electrical contribution of the TEG started to dominate in the total system power, reaching ∼20% at X ≈ 290. Using a simple steady state finite element modeling, the cooling effect of the TEG on the hybrid system's efficiency was proved to be even more significant than its direct electrical contribution for high solar concentrations. As a result, the total efficiency contribution of the TEG reached ∼40% at X ≈ 200. This suggests a new system optimization concept that takes into account the PV cell's temperature dependence and the trade-off between the direct electrical generation and cooling capabilities of the TEG. It is shown that the hybrid system has a real potential to exceed 50% total efficiency by using more advanced PV cells and TE materials.

1.
T. M.
Razykov
,
C. S.
Ferekides
,
D.
Morel
,
E.
Stefanakos
,
H. S.
Ullal
, and
H. M.
Upadhyaya
, “
Solar photovoltaic electricity: Current status and future prospects
,”
Sol. Energy
85
,
1580
(
2011
).
2.
K.
Branker
,
M. J. M.
Pathak
, and
J. M.
Pearce
, “
A review of solar photovoltaic levelized cost of electricity
,”
Renewable Sustainable Energy Rev.
15
,
4470
(
2011
).
3.
B.
Parida
,
S.
Iniyan
, and
R.
Goic
, “
A review of solar photovoltaic technologies
,”
Renewable Sustainable Energy Rev.
15
,
1625
(
2011
).
4.
M. A.
Green
,
K.
Emery
,
Y.
Hishikawa
,
W.
Warta
, and
E. D.
Dunlop
, “
Solar cell efficiency tables (version 43)
,”
Prog. Photovolt: Res. Appl.
22
(
1
),
1
(
2014
).
5.
A.
De Vos
and
H.
Pauwels
, “
On the thermodynamic limit of photovoltaic energy conversion
,”
Appl. Phys.
25
,
119
(
1981
).
6.
M. A.
Green
,
K.
Emery
,
Y.
Hishikawa
,
W.
Warta
, and
E. D.
Dunlop
, “
Solar cell efficiency tables (version 44)
,”
Prog. Photovolt: Res. Appl.
22
(
7
),
701
(
2014
).
7.
F.
Dimroth
,
M.
Grave
,
P.
Beutel
,
U.
Fiedeler
,
C.
Karcher
,
T. N. D.
Tibbits
,
E.
Oliva
,
G.
Siefer
,
M.
Schachtner
,
A.
Wekkeli
,
A. W.
Bett
,
R.
Krause
,
M.
Piccin
,
N.
Blanc
,
C.
Drazek
,
E.
Guiot
,
B.
Ghyselen
,
T.
Salvetat
,
A.
Tauzin
,
T.
Signamarcheix
,
A.
Dobrich
,
T.
Hannappel
, and
K.
Schwarzburg
, “
Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency
,”
Prog. Photovolt: Res. Appl.
22
,
277
(
2014
).
8.
D.
Kraemer
,
L.
Hu
,
A.
Muto
,
X.
Chen
,
G.
Chen
, and
M.
Chiesa
, “
Photovoltaic-thermoelectric hybrid systems: A general optimization methodology
,”
Appl. Phys. Lett.
92
,
243503
(
2008
).
9.
W. G. J. H. M.
Van Sark
, “
Feasibility of photovoltaic–Thermoelectric hybrid modules
,”
Appl. Energy
88
,
2785
(
2011
).
10.
Yu.
Vorobiev
,
J.
Gonzalez-Hernandez
,
P.
Vorobiev
, and
L.
Bulat
, “
Thermal-photovoltaic solar hybrid system for efficient solar energy conversion
,”
Sol. Energy
80
,
170
(
2006
).
11.
E. A.
Chavez-Urbiola
,
Yu. V.
Vorobiev
, and
L. P.
Bulat
, “
Solar hybrid systems with thermoelectric generators
,”
Sol. Energy
86
,
369
(
2012
).
12.
H.
Najafi
and
K. A.
Woodbury
, “
Modeling and analysis of a combined photovoltaic-thermoelectric power generation system
,”
J. Sol. Energy Eng.
135
,
31013
(
2013
).
13.
K. T.
Park
,
S. M.
Shin
,
A. S.
Tazebay
,
H. D.
Um
,
J. Y.
Jung
,
S. W.
Jee
,
M. W.
Oh
,
S. D.
Park
,
B.
Yoo
,
C.
Yu
, and
J. H.
Lee
, “
Lossless hybridization between photovoltaic and thermoelectric devices
,”
Sci. Rep.
3
,
2123
(
2013
).
14.
J.
Zhang
,
X.
Yimin
, and
Y.
Lili
, “
Performance estimation of photovoltaic–thermoelectric hybrid systems
,”
Energy
78
,
895
(
2014
).
15.
R.
Bjørk
and
K. K.
Nielsen
, “
The performance of a combined solar photovoltaic (pv) and thermoelectric generator (TEG) system
,”
Sol. Energy
120
,
187
(
2015
).
16.
F.
Attivissimo
,
A.
Di Nisio
,
A. M. L.
Lanzolla
, and
M.
Paul
, “
Feasibility of a photovoltaic #x2013; thermoelectric generator: Performance analysis and simulation results
,”
IEEE Trans. Instrum. Meas.
64
(
5
),
1158
(
2015
).
17.
T.
Liao
,
L.
Bihong
, and
Y.
Zhimin
, “
Performance characteristics of a low concentrated photovoltaic–thermoelectric hybrid power generation device
,”
Int. J. Therm. Sci.
77
,
158
(
2014
).
18.
N.
Wang
,
L.
Han
,
H.
He
,
N. H.
Park
, and
K.
Koumoto
, “
A novel high-performance photovoltaic–thermoelectric hybrid device
,”
Energy Environ. Sci.
4
,
3676
(
2011
).
19.
D.
Yang
and
H.
Yin
, “
Energy conversion efficiency of a novel hybrid solar system for photovoltaic, thermoelectric, and heat utilization
,”
IEEE Trans. Energy Convers.
26
(
2
),
662
(
2011
).
20.
J. M.
Gordon
,
D.
Babai
, and
D.
Feuermann
, “
Basic aspects of the temperature coefficients of concentrator solar cell performance parameters
,”
Sol. Energy Mater. Sol. Cells
95
,
951
(
2011
).
21.
A.
Braun
,
B.
Hirch
,
A.
Vossier
,
E. A.
Katz
, and
J. M.
Gordon
, “
Temperature dynamics of multijunction concentrator solar cells up to ultra-high irradiance
,”
Prog. Photovolt: Res. Appl.
21
(
2
),
202
(
2013
).
22.
E.
Hazan
,
O.
Ben-Yehuda
,
N.
Madar
, and
Y.
Gelbstein
, “
Functional graded Germanium-Lead Chalcogenides-based thermoelectric module for renewable energy applications
,”
Adv. Energy Mater.
5
,
1500272
(
2015
).
23.
S.
Fan
,
J.
Zhao
,
J.
Guo
,
Q.
Yan
,
J.
Ma
, and
H.
Hoon
, “
p-type Bi0.4Sb1.6Te3 nanocomposites with enhanced figure of merit
,”
Appl. Phys. Lett.
96
(
18
),
182104
(
2010
).
24.
I. H.
Kim
,
S. M.
Choi
,
W. S.
Seo
,
D. I.
Cheong
, and
H.
Kang
, “
Synthesis and thermoelectric properties of Cu-dispersed Bi2Te2.7Se0.3
,”
J. Ceram. Process. Res.
13
(
2
),
170
(
2012
).
25.
High conductivity Coppers For Electrical Engineering
(
Copper Development Association, 5 Grovelands Business Centre, Boundary Way, Hemel Hempstead, HP2 7TE
,
1998
), pp.
20
and 72.
26.
M. A.
Green
,
K.
Emery
,
Y.
Hishikawa
,
W.
Warta
, and
E. D.
Dunlop
,
Prog. Photovolt: Res. Appl.
21
,
1
(
2013
).
27.
A.
Braun
,
E. A.
Katz
, and
J. M.
Gordon
,
Prog. Photovolt: Res. Appl.
21
,
1087
(
2013
).
28.
R.
Venkatasubramanian
,
E.
Silvola
,
T.
Colpitts
, and
B.
O'Quinn
, “
Thin-film thermoelectric devices with high room-temperature figures of merit
,”
Nature
413
,
597
(
2001
).
29.
Y. M.
Lin
and
M. S.
Dresselhaus
, “
Thermoelectric properties of superlattice nanowires
,”
Phys. Rev. B
68
,
075304
(
2003
).
30.
G.
Min
and
D. M.
Rowe
, “
A serious limitation to the phonon glass electron crystal (PGEC) approach to improved thermoelectric materials
,”
J. Mater. Sci. Lett.
18
,
1305
(
1999
).
31.
Y.
Gelbstein
,
B.
Dado
,
O.
Ben-Yehuda
,
Y.
Sadia
,
Z.
Dashevsky
, and
M. P.
Dariel
, “
Highly efficient Ge-rich GexPb1xTe thermoelectric alloys
,”
J. Electron. Mater.
39
(
9
),
2049
(
2010
).
32.
Y.
Gelbstein
,
Y.
Rosenberg
,
Y.
Sadia
, and
M. P.
Dariel
, “
Thermoelectric properties evolution of spark plasma sintered (Ge0.6Pb0.3Sn0.1)Te following a spinodal decomposition
,”
J. Phys. Chem. C
114
,
13126
(
2010
).
33.
Y.
Gelbstein
,
J.
Davidow
,
S. N.
Girard
,
D. Y.
Chung
, and
M.
Kanatzidis
, “
Controlling metallurgical phase separation reactions of the Ge0.87Pb0.13Te alloy for high thermoelectric performance
,”
Adv. Energy Mater.
3
,
815
(
2013
).
You do not currently have access to this content.