The impact of grain-boundary segregation on the high-temperature Kapitza resistance of doped β-SiC using non-equilibrium molecular dynamics simulation is investigated. In particular, low-angle, symmetric tilt grain boundaries are examined to assess the roles of dopant concentration and dopant/matrix interaction strength in determining the resistance. For relatively weak interaction strengths, dopant clustering predominates, and the Kapitza resistance increases significantly for small changes in dopant concentration. As the dopant/matrix interaction strength is increased, dopant layering is observed with a concomitant gradual increase in resistance with concentration. The different interaction strength regimes are investigated by mapping the spatial distribution of boundary temperatures and by quantifying the degree of spatial ordering at a boundary. It was found that dopant clustering leads to a heat flux parallel to the grain-boundary plane and to significant boundary disorder, partly explaining the observed increase in Kapitza resistance at the boundary.

1.
J.
Yang
,
Potential Applications of Thermoelectric Waste Heat Recovery in the Automotive Industry
(
IEEE
,
2005
), p.
170
.
2.
S.
Kumar
,
S. D.
Heister
,
X.
Xu
,
J. R.
Salvador
, and
G. P.
Meisner
,
J. Electron. Mater.
42
,
665
(
2013
).
3.
R.
Venkatasubramanian
,
E.
Siivola
,
T.
Colpitts
, and
B.
O'Quinn
,
Nature
413
,
597
(
2001
).
4.
T. C.
Harman
,
M. P.
Walsh
,
B. E.
Laforge
, and
G. W.
Turner
,
J. Electron. Mater.
34
,
L19
(
2005
).
5.
P.
Sundarraj
,
D.
Maity
,
S. S.
Roy
, and
R. A.
Taylor
,
RSC Adv.
4
,
46860
(
2014
).
6.
D.
Rowe
,
Thermoelectrics Handbook: Macro to Nano
(
CRC Press
,
Boca Raton
,
2006
).
7.
G. S.
Nolas
,
J.
Sharp
, and
H.
Goldsmind
,
Thermoelectrics: Basic Principles and New Materials Developments
(
Springer
,
New York
,
2001
).
8.
M. S.
Dresselhaus
,
G.
Chen
,
M. Y.
Tang
,
R.
Yang
,
H.
Lee
,
D.
Wang
,
Z.
Ren
,
J.-P.
Fleurial
, and
P.
Gogna
,
Adv. Mater.
19
,
1043
(
2007
).
9.
A. J.
Minnich
,
M. S.
Dresselhaus
,
Z. F.
Ren
, and
G.
Chen
,
Energy Environ. Sci.
2
,
466
(
2009
).
10.
L.
Hicks
and
M.
Dresselhaus
,
Phys. Rev. B
47
,
12727
(
1993
).
11.
B.
Poudel
,
Q.
Hao
,
Y.
Ma
,
Y.
Lan
,
A.
Minnich
,
B.
Yu
,
X.
Yan
,
D.
Wang
,
A.
Muto
,
D.
Vashaee
,
X.
Chen
,
J.
Liu
,
M. S.
Dresselhaus
,
G.
Chen
, and
Z.
Ren
,
Science
320
,
634
(
2008
).
12.
G.
Chen
,
Phys. Rev. B
57
,
14958
(
1998
).
13.
C.
Dames
and
G.
Chen
, in
Thermoelectrics Handbook: Macro to Nano
, edited by
D. M.
Row
(
Taylor & Francis
,
New York
,
2006
).
14.
E.
Matatagui
,
A.
Thompson
, and
M.
Cardona
,
Phys. Rev.
176
,
950
(
1968
).
15.
S.
Thorne
,
S.
Ippolito
,
M.
Ünlü
, and
B.
Goldberg
,
High-resolution Thermoreflectance Microscopy
(
Cambridge University Press
,
2002
), p.
G12.9
.
16.
A. J.
Minnich
,
J.
Johnson
,
A.
Schmidt
,
K.
Esfarjani
,
M.
Dresselhaus
,
K. A.
Nelson
, and
G.
Chen
,
Phys. Rev. Lett.
107
,
095901
(
2011
).
17.
Y. K.
Koh
and
D. G.
Cahill
,
Phys. Rev. B
76
,
075207
(
2007
).
18.
J.
Cuffe
,
J. K.
Eliason
,
A. A.
Maznev
,
K. C.
Collins
,
J. A.
Johnson
,
A.
Shchepetov
,
M.
Prunnila
,
J.
Ahopelto
,
C. M. S.
Torres
, and
G.
Chen
, preprint arXiv:1408.6747 (
2014
).
19.
A.
Minnich
,
J. Phys.: Condens. Matter
27
,
053202
(
2015
).
20.
F.
Yang
and
C.
Dames
,
Phys. Rev. B
87
,
035437
(
2013
).
21.
R.
Cheaito
,
J. T.
Gaskins
,
M. E.
Caplan
,
B. F.
Donovan
,
B. M.
Foley
,
A.
Giri
,
J. C.
Duda
,
C. J.
Szwejkowski
,
C.
Constantin
, and
H. J.
Brown-Shaklee
,
Phys. Rev. B
91
,
035432
(
2015
).
22.
X.
Zhou
,
R. E.
Jones
,
J.
Duda
, and
P.
Hopkins
,
Phys. Chem. Chem. Phys.
15
,
11078
(
2013
).
23.
S.
Merabia
and
K.
Termentzidis
,
Phys. Rev. B
86
,
094303
(
2012
).
24.
E.
Landry
and
A.
McGaughey
,
Phys. Rev. B
80
,
165304
(
2009
).
25.
J.-P.
Crocombette
and
L.
Gelebart
,
J. Appl. Phys.
106
,
083520
(
2009
).
26.
A.
Bagri
,
S.-P.
Kim
,
R. S.
Ruoff
, and
V. B.
Shenoy
,
Nano Lett.
11
,
3917
(
2011
).
27.
J. C.
Duda
,
C. J.
Kimmer
,
W. A.
Soffa
,
X. W.
Zhou
,
R. E.
Jones
, and
P. E.
Hopkins
,
J. Appl. Phys.
112
,
093515
(
2012
).
28.
C. F.
Carlborg
,
J.
Shiomi
, and
S.
Maruyama
,
Phys. Rev. B
78
,
205406
(
2008
).
29.
R. E.
Jones
,
J. C.
Duda
,
X. W.
Zhou
,
C. J.
Kimmer
, and
P. E.
Hopkins
,
Appl. Phys. Lett.
102
,
183119
(
2013
).
30.
X. W.
Zhou
,
R. E.
Jones
,
C. J.
Kimmer
,
J. C.
Duda
, and
P. E.
Hopkins
,
Phys. Rev. B
87
,
094303
(
2013
).
31.
T.
Wang
,
G.
Madsen
, and
A.
Hartmaier
,
Modell. Simul. Mater. Sci. Eng.
22
,
035011
(
2014
).
32.
Y.
Ni
,
S.
Xiong
,
S.
Volz
, and
T.
Dumitricǎ
,
Phys. Rev. Lett.
113
,
124301
(
2014
).
33.
P. E.
Hopkins
,
Int. Scholarly Res. Not.
2013
,
682586
.
34.
P. E.
Hopkins
,
J. C.
Duda
,
S. P.
Clark
,
C. P.
Hains
,
T. J.
Rotter
,
L. M.
Phinney
, and
G.
Balakrishnan
,
Appl. Phys. Lett.
98
,
161913
(
2011
).
35.
J. C.
Duda
,
T. S.
English
,
E. S.
Piekos
,
W. A.
Soffa
,
L. V.
Zhigilei
, and
P. E.
Hopkins
,
Phys. Rev. B
84
,
193301
(
2011
).
36.
M. P.
Harmer
,
Science
332
,
182
(
2011
).
37.
S. J.
Dillon
,
M.
Tang
,
W. C.
Carter
, and
M. P.
Harmer
,
Acta Mater.
55
,
6208
(
2007
).
38.
P. C.
Millett
,
R. P.
Selvam
, and
A.
Saxena
,
Acta Mater.
54
,
297
(
2006
).
39.
P. C.
Millett
,
R. P.
Selvam
, and
A.
Saxena
,
Acta Mater.
55
,
2329
(
2007
).
40.
J. C.
Duda
,
T. S.
English
,
E. S.
Piekos
,
T. E.
Beechem
,
T. W.
Kenny
, and
P. E.
Hopkins
,
J. Appl. Phys.
112
,
073519
(
2012
).
41.
S.
Plimpton
,
J. Comput. Phys.
117
,
1
(
1995
).
42.
J.-P.
Crocombette
,
G.
Dumazer
,
N. Q.
Hoang
,
F.
Gao
, and
W. J.
Weber
,
J. Appl. Phys.
101
,
023527
(
2007
).
43.
L. J.
Porter
,
J.
Li
, and
S.
Yip
,
J. Nucl. Mater.
246
,
53
(
1997
).
44.
J.
Li
,
L.
Porter
, and
S.
Yip
,
J. Nucl. Mater.
255
,
139
(
1998
).
45.
N.
Papanikolaou
,
J. Phys.: Condens. Matter
20
,
135201
(
2008
).
46.
T. S.
English
,
J. C.
Duda
,
J. L.
Smoyer
,
D. A.
Jordan
,
P. M.
Norris
, and
L. V.
Zhigilei
,
Phys. Rev. B
85
,
035438
(
2012
).
47.
R. J.
Stevens
,
L. V.
Zhigilei
, and
P. M.
Norris
,
Int. J. Heat Mass Transf.
50
,
3977
(
2007
).
48.
D. P.
Sellan
,
E. S.
Landry
,
J. E.
Turney
,
A. J. H.
McGaughey
, and
C. H.
Amon
,
Phys. Rev. B
81
,
214305
(
2010
).
49.
C.-J.
Twu
and
J.-R.
Ho
,
Phys. Rev. B
67
,
205422
(
2003
).
50.
D. L.
Olmsted
,
S. M.
Foiles
, and
E. A.
Holm
,
Acta Mater.
57
,
3694
(
2009
).
51.
P.
Jund
and
R.
Jullien
,
Phys. Rev. B
59
,
13707
(
1999
).
52.
P. K.
Schelling
,
S. R.
Phillpot
, and
P.
Keblinski
,
Phys. Rev. B
65
,
144306
(
2002
).
53.
A.
Maiti
,
G. D.
Mahan
, and
S. T.
Pantelides
,
Solid State Commun.
102
,
517
(
1997
).
54.
R.
Stoner
and
H.
Maris
,
Phys. Rev. B
48
,
16373
(
1993
).
55.
C.
Tien
,
A.
Majumdar
, and
F.
Gerner
,
Microscale Energy Transport
(
Taylor and Francis
,
Washington, DC
,
1998
).
56.
P. R.
Cantwell
,
M.
Tang
,
S. J.
Dillon
,
J.
Luo
,
G. S.
Rohrer
, and
M. P.
Harmer
,
Acta Mater.
62
,
1
(
2014
).
57.
J.
Rickman
,
H.
Chan
,
M.
Harmer
, and
J.
Luo
,
Surf. Sci.
618
,
88
(
2013
).
You do not currently have access to this content.