This paper reports measured and calculated (through molecular dynamics simulations) latent heat of vaporization (Hfg) for water and ethanol based nanofluids. The experimental results showed that the addition of 3 wt. % Ag and Fe nanoparticles in water results in a substantial reduction in Hfg (25% and 17%, respectively). On the contrary, 3 wt. % Al addition slightly increases Hfg (3%). Similar trends were observed for ethanol based nanofluids: 3 wt. % addition of Ag and Fe resulted in a reduction in Hfg by 19% and 13%, respectively, whereas 3 wt. % Al addition resulted in an increases in Hfg by 2%. Molecular dynamics simulations, which determine Hfg by calculating the total enthalpy change of a system before and after vaporization from a molecular level, showed that the strength of bonding between the nanoparticles and the fluid molecules is the governing factor in the variation of Hfg upon particle addition. It was found that the strength of Al/water bonds was much greater than Ag/water, resulting in a reduction in Hfg for the Ag/water nanofluids.

1.
S. K.
Das
,
S. U. S.
Choi
, and
H. E.
Patel
,
Heat Transfer Eng.
27
(
10
),
3
19
(
2006
).
2.
G.
Ramesh
and
N. K.
Prabhu
,
Nanoscale Res. Lett.
6
,
334
(
2011
).
3.
V.
Sridhara
and
L. N.
Satapathy
,
Nanoscale Res. Lett.
6
,
646
(
2011
).
4.
M.
Jones
,
C. H.
Li
,
A.
Afjeh
, and
G. P.
Peterson
,
Nanoscale Res. Lett.
6
,
246
(
2011
).
5.
C.
Allen
,
G.
Mittal
,
C. J.
Sung
,
E.
Toulson
, and
T.
Lee
,
Proc. Combust. Inst.
33
,
3367
3374
(
2011
).
6.
Y. A.
Gan
and
L.
Qiao
,
Combust. Flame
158
(
2
),
354
368
(
2011
).
7.
Y. A.
Gan
and
L.
Qiao
,
Int. J. Heat and Mass Transfer
54
(
23–24
),
4913
4922
(
2011
).
8.
J. L.
Sabourin
,
R. A.
Yetter
,
B. W.
Asay
,
J. M.
Lloyd
,
V. E.
Sanders
,
G. A.
Risha
, and
S. F.
Son
,
Propellants, Explos., Pyrotechn.
34
(
5
),
385
393
(
2009
).
9.
H.
Tyagi
,
P. E.
Phelan
,
R.
Prasher
,
R.
Peck
,
T.
Lee
,
J. R.
Pacheco
, and
P.
Arentzen
,
Nano Lett.
8
(
5
),
1410
1416
(
2008
).
10.
B.
Van Devener
and
S. L.
Anderson
,
Energy Fuels
20
(
5
),
1886
1894
(
2006
).
11.
B.
Van Devener
,
J. P. L.
Perez
,
J.
Jankovich
, and
S. L.
Anderson
,
Energy Fuels
23
,
6111
6120
(
2009
).
12.
M. M.
Ameen
,
K.
Prabhul
,
G.
Sivakumar
,
P. P.
Abraham
,
U. B.
Jayadeep
, and
C. B.
Sobhan
,
Int. J. Thermophys.
31
(
6
),
1131
1144
(
2010
).
13.
R. H.
Chen
,
T. X.
Phuoc
, and
D.
Martello
,
Int. J. Heat Mass Transfer
53
(
19–20
),
3677
3682
(
2010
).
14.
C. K.
Law
,
Prog. Energy Combust. Sci.
8
(
3
),
171
201
(
1982
).
15.
J. L.
Sabourin
,
R. A.
Yetter
, and
V. S.
Parimi
,
J. Propul. Power
26
(
5
),
1006
1015
(
2010
).
16.
K. W.
McCown
and
E. L.
Petersen
,
Combust. Flame
161
(
7
),
1935
1943
(
2014
).
17.
S.
Tanvir
and
L.
Qiao
,
J. Propul. Power
31
(
1
),
1
8
(
2014
).
18.
B. J.
Zhu
,
W. L.
Zhao
,
J. K.
Li
,
Y. X.
Guan
, and
D. D.
Li
,
Mater. Sci. Forum
688
,
266
271
(
2011
).
19.
S.
Lee
,
P. E.
Phelan
,
L.
Dai
,
R.
Prasher
,
A.
Gunawan
, and
R. A.
Taylor
,
Appl. Phys. Lett.
104
(
15
),
151908
(
2014
).
20.
Y. A.
Gan
,
Y. S.
Lim
, and
L.
Qiao
,
Combust. Flame
159
(
4
),
1732
1740
(
2012
).
21.
F. P.
Incropera
,
Fundamentals of Heat and Mass Transfer
, 6th ed. (
John Wiley
,
Hoboken, NJ
,
2007
).
22.
S.
Plimpton
,
P.
Crozier
, and
A.
Thompson
, “
LAMMPS-large-scale atomic/molecular massively parallel simulator
,”
Sandia National Laboratories
, Vol.
18
(
2007
).
23.
H. J. C.
Berendsen
,
J. R.
Grigera
, and
T. P.
Straatsma
,
J. Phys. Chem.
91
(
24
),
6269
6271
(
1987
).
24.
H. J. C.
Berendsen
,
J. P. M.
Postma
,
J. P. M.
van Gunsteren
, and
J.
Hermans
,
paper presented at the Jerusalem Symposia on Quantum Chemistry and Biochemistry
,
Jerusalem
,
Israel
, 13–16 April
1981
.
25.
M. S.
Daw
and
M. I.
Baskes
,
Phys. Rev. Lett.
50
(
17
),
1285
1288
(
1983
).
26.
D.
Berthelot
,
Compt. Rendus
126
,
1703
1855
(
1898
).
27.
H. A.
Lorentz
,
Ann. Phys.
248
(
1
),
127
136
(
1881
).
28.
P.
Guan
,
D. R.
Mckenzie
, and
B. A.
Pailthorpe
,
J. Phys.: Condens. Matter
8
(
45
),
8753
8762
(
1996
).
29.
P.
Puri
and
V.
Yang
,
J. Phys. Chem. C
111
(
32
),
11776
11783
(
2007
).
30.
O.
Buneman
,
SIAM Rev.
25
(
3
),
425
426
(
1983
).
31.
S.
Maruyama
,
Molecular Dynamics Method for Microscale Heat Transfer
(
Taylor and Francis
,
New York
,
2000
).
32.
S.
Melchionna
,
G.
Ciccotti
, and
B. L.
Holian
,
Mol. Phys.
78
(
3
),
533
544
(
1993
).
33.
M.
Holz
,
S. R.
Heil
, and
A.
Sacco
,
Phys. Chem. Chem. Phys.
2
(
20
),
4740
4742
(
2000
).
You do not currently have access to this content.