Atomic scale computer simulations using density functional theory were used to investigate the behaviour of tin in the tetragonal phase oxide layer on Zr-based alloys. The SnZr× defect was shown to be dominant across most oxygen partial pressures, with SnZr charge compensated by VO occurring at partial pressures below 10−31 atm. Insertion of additional positive charge into the system was shown to significantly increase the critical partial pressure at which SnZr is stable. Recently developed low-Sn nuclear fuel cladding alloys have demonstrated an improved corrosion resistance and a delayed transition compared to Sn-containing alloys, such as Zircaloy-4. The interaction between the positive charge and the tin defect is discussed in the context of alloying additions, such as niobium and their influence on corrosion of cladding alloys.

1.
E.
Hillner
, “
Corrosion of Zirconium-Base Alloys—An Overview
,”
Zirconium in the Nuclear Industry Proceedings of the Third International Conference, ASTM STP 633
, edited by
A. L.
Lowe
, Jr.
and
G. W.
Parry
(
American Society for Testing and Materials
,
1977
), pp.
211
235
.
2.
J. S.
Bryner
, “
The cyclic nature of corrosion of Zircaloy-4 in 633 K water
,”
J. Nucl. Mater.
82
,
84
101
(
1979
).
3.
M.
Miyake
,
M.
Uno
, and
S.
Yamanaka
, “
On the zirconium-oxygen-hydrogen ternary system
,”
J. Nucl. Mater.
270
,
233
241
(
1999
).
4.
A.
Couet
, “
Hydrogen pick-up behaviour in zirconium alloys
,” Ph.D. thesis (
Pennsylvania State University
,
2011
).
5.
P.
Raynaud
and
A.
Bielen
, “
Cladding hydrogen based regulations in the United States
,”
2011 Water Reactor Fuel Performance Meeting Chengdu, China, 11–14 Sept. 2011
, T3–031.
6.
H. J.
Beie
, “
Examinations of the corrosion mechanism of zirconium alloys
,”
Zirconium in the Nuclear Industry: Tenth International Symposium, ASTM STP 1245
, edited by
A. M.
Garde
and
E. R.
Bradley
(
American Society for Testing and Materials
,
Philadelphia
,
1994
), pp.
615
643
.
7.
M.
Preuss
,
P.
Frankel
,
S.
Lozano-Perez
,
D.
Hudson
,
E.
Polatidis
,
N.
Ni
,
J.
Wei
,
C.
English
,
S.
Storer
,
K. B.
Chong
,
M.
Fitzpatrick
,
P.
Wang
,
J.
Smith
,
C. R. M.
Grovenor
,
G.
Smith
,
J.
Sykes
,
B.
Cottis
,
S.
Lyon
,
L.
Hallstadius
,
B.
Comstock
,
A.
Ambard
,
M.
Blat-Yrieix
,
P.
Barberis
, and
S. W.
Dean
, “
Studies regarding corrosion mechanisms in zirconium alloys
,”
J. ASTM Int.
8
(
9
),
649
681
(
2011
).
8.
A.
Garner
,
M.
Preuss
, and
P.
Frankel
, “
A method for accurate texture determination of thin oxide films by glancing-angle laboratory X-ray diffraction
,”
J. Appl. Crystallogr.
47
(
2
),
575
583
(
2014
).
9.
H.
Anada
and
K.
Takeda
, “
Microstructure of oxides on Zircaloy-4, 1.0 Nb Zircaloy-4, and Zircaloy-2 formed in 10.3-MPa steam at 673 K
,”
Zirconium in the Nuclear Industry: Eleventh International Symposium, ASTM STP 1295
, edited by
E. R.
Bradley
and
G. P.
Sahol
(
American Society for Testing and Materials
,
1996
), pp.
35
54
.
10.
P. T.
Moseley
and
B.
Hudson
, “
Phases involved in the corrosion of zircaloy by hot water (350 °C)
,”
J. Nucl. Mater.
99
,
340
344
(
1981
).
11.
T.
Furuta
and
H.
Motohashi
, “
Products at the surface of zircaloy cladding under loca conditions
,”
J. Nucl. Mater.
95
,
303
306
(
1980
).
12.
X.
Iltis
and
H.
Michel
, “
Transmission electron microscopy study of a locally ordered Zr–O solid solution obtained by an oxidation treatment of a Zircaloy-4 alloy
,”
J. Alloys Compd.
177
,
71
82
(
1991
).
13.
S. C.
Lumley
,
S. T.
Murphy
,
P. A.
Burr
,
R. W.
Grimes
,
P. R.
Chard-Tuckey
, and
M. R.
Wenman
, “
The stability of alloying additions in Zirconium
,”
J. Nucl. Mater.
437
(
1–3
),
122
129
(
2013
).
14.
H.
Wang
,
A.
Chroneos
,
C.
Jiang
, and
U.
Schwingenschlögl
, “
Modelling zirconium hydrides using the special quasirandom structure approach
,”
Phys. Chem. Chem. Phys.
15
(
20
),
7599
7603
(
2013
).
15.
B.
Puchala
and
A.
Van der Ven
, “
Thermodynamics of the Zr-O system from first-principles calculations
,”
Phys. Rev. B
88
(
9
),
094108
(
2013
).
16.
R. J.
Nicholls
,
N.
Ni
,
S.
Lozano-Perez
,
A.
London
,
D. W.
McComb
,
P. D.
Nellist
,
C. R. M.
Grovenor
,
C. J.
Pickard
, and
J. R.
Yates
, “
Crystal structure of the ZrO phase at zirconium/zirconium oxide interfaces
,”
Adv. Eng. Mater.
17
,
211
215
(
2015
).
17.
Y.
Ding
and
D. O.
Northwood
, “
TEM study of the oxide-metal interface formed during corrosion of Zr-2.5 wt.% Nb pressure tubing
,”
Mater. Charact.
30
,
13
22
(
1993
).
18.
N.
Petigny
,
P.
Barberis
,
C.
Lemaignan
,
Ch.
Valot
, and
M.
Lallemant
, “
In situ XRD analysis of the oxide layers formed by oxidation at 743 K on Zircaloy 4 and Zr-1NbO
,”
J. Nucl. Mater.
280
(
3
),
318
330
(
2000
).
19.
A.
Yilmazbayhan
,
A. T.
Motta
,
R. J.
Comstock
,
G. P.
Sabol
,
B.
Lai
, and
Z.
Cai
, “
Structure of zirconium alloy oxides formed in pure water studied with synchrotron radiation and optical microscopy: Relation to corrosion rate
,”
J. Nucl. Mater.
324
(
1
),
6
22
(
2004
).
20.
D.
Hudson
,
N.
Ni
,
S.
Lozano-Perez
, and
D.
Saxey
, “
The atomic scale structure and chemistry of the Zircaloy-4 metal-oxide interface
,” in
Proceedings of the 14th International Conference on Environmental Degradation of Materials in Nuclear Power Systems, Virginia Beach, VA, 23–27 August (2009).
21.
N.
Ni
,
D.
Hudson
,
J.
Wei
,
P.
Wang
,
S.
Lozano-Perez
,
G. D. W.
Smith
,
J. M.
Sykes
,
S. S.
Yardley
,
K. L.
Moore
,
S.
Lyon
,
R.
Cottis
,
M.
Preuss
, and
C. R. M.
Grovenor
, “
How the crystallography and nanoscale chemistry of the metal/oxide interface develops during the aqueous oxidation of zirconium cladding alloys
,”
Acta Mater.
60
(
20
),
7132
7149
(
2012
).
22.
C.
Roy
and
G.
David
, “
X-ray diffraction analyses of zirconia films on zirconium and zircaloy-2
,”
J. Nucl. Mater.
37
,
71
81
(
1970
).
23.
E.
Polatidis
,
P.
Frankel
,
J.
Wei
,
M.
Klaus
,
R. J.
Comstock
,
A.
Ambard
,
S.
Lyon
,
R. A.
Cottis
, and
M.
Preuss
, “
Residual stresses and tetragonal phase fraction characterisation of corrosion tested Zircaloy-4 using energy dispersive synchrotron X-ray diffraction
,”
J. Nucl. Mater.
432
(
1–3
),
102
112
(
2013
).
24.
F.
Antoni
,
M.
Pons
,
M.
Ignat
, and
D.
Hertz
, “
Approche mecano-chimique de l'oxydation du zircaloy-4
,”
Surf. Coat. Technol.
46
,
347
360
(
1991
).
25.
F.
Garzarolli
and
H.
Seidel
, “
Oxide growth mechanism on zirconium alloys
,”
Zirconium in the Nuclear Industry: Ninth International Symposium, ASTM STP 1132
, edited by
C. M.
Eucken
and
A. M.
Garde
(
American Society for Testing and Materials
,
Philadelphia
,
1991
), pp.
395
415
.
26.
P.
Bouvier
,
J.
Godlewski
, and
G.
Lucazeau
, “
A Raman study of the nanocrystallite size effect on the pressure-temperature phase diagram of zirconia grown by zirconium-based alloys oxidation
,”
J. Nucl. Mater.
300
(
2–3
),
118
126
(
2002
).
27.
S.
Block
,
J. A. H.
Da Jornada
, and
G. J.
Piermarini
, “
Pressure-temperature phase diagram of zirconia
,”
J. Am. Ceram. Soc.
68
(
9
),
497
499
(
1985
).
28.
S.
Ortner
,
H.
Swan
,
A.
Laferrere
,
C.
English
,
J.
Hyde
, and
P.
Styman
, “
Study of zircaloy corrosion to develop mechanistic understanding
,” in
Contribution of Materials Investigations and Operating Experience to LWRs Safety, Performance and Reliability, France, Avignon, 14–18 September 2014.
29.
P.
Aldebert
and
J. P.
Traverse
, “
Structure and ionic mobility of zirconia at high temperature
,”
J. Am. Ceram. Soc.
68
(
1
),
34
40
(
1985
).
30.
P.
Barberis
, “
Raman spectra of tetragonal zirconia: Powder to zircaloy oxide frequency shift
,”
J. Nucl. Mater.
288
,
241
247
(
2001
).
31.
W.
Qin
,
C.
Nam
,
H.
Li
, and
J.
Szpunar
, “
Tetragonal phase stability in ZrO2 film formed on zirconium alloys and its effects on corrosion resistance
,”
Acta Mater.
55
(
5
),
1695
1701
(
2007
).
32.
A.
Bogicevic
,
C.
Wolverton
,
G.
Crosbie
, and
E.
Stechel
, “
Defect ordering in aliovalently doped cubic zirconia from first principles
,”
Phys. Rev. B
64
(
1
),
014106
(
2001
).
33.
X.
Xia
, “
Computational modelling study of yttria-stabilized zirconia
,” Ph.D. thesis (
University College London
,
2010
).
34.
H. S.
Hong
,
S. J.
Kim
, and
K. S.
Lee
, “
Effects of alloying elements on the tensile properties and oxidation behavior of modified Zircaloy-4 in 360 °C water
,”
J. Nucl. Mater.
238
,
211
217
(
1996
).
35.
J.
Wei
,
P.
Frankel
,
E.
Polatidis
,
M.
Blat
,
A.
Ambard
,
R. J.
Comstock
,
L.
Hallstadius
,
D.
Hudson
,
G. D. W.
Smith
,
C. R. M.
Grovenor
,
M.
Klaus
,
R. A.
Cottis
,
S.
Lyon
, and
M.
Preuss
, “
The effect of Sn on autoclave corrosion performance and corrosion mechanisms in Zr-Sn-Nb alloys
,”
Acta Mater.
61
(
11
),
4200
4214
(
2013
).
36.
J.
Schefold
,
D.
Lincot
,
A.
Ambard
, and
O.
Kerrec
, “
The cyclic nature of corrosion of Zr and Zr-Sn in high-temperature water (633 K)
,”
J. Electrochem. Soc.
150
(
10
),
B451
(
2003
).
37.
K.
Takeda
and
H.
Anada
, “
Mechanism of corrosion rate degradation due to tin
,” in
Zirconium in the Nuclear Industry: Twelfth International Symposium, ASTM STP No. 1354
, edited by
G. P.
Sabol
and
G. D.
Moan
(
American Society for Testing and Materials, West Conshohocken, PA
,
2000
), pp.
592
608
.
38.
P.
Barberis
and
A.
Frichet
, “
Characterization of Zircaloy-4 oxide layers by impedance spectroscopy
,”
J. Nucl. Mater.
273
,
182
191
(
1999
).
39.
S. J.
Clark
and
M. D.
Segall
, “
First principles methods using CASTEP
,”
Z. Kristallogr.
220
,
567
570
(
2005
).
40.
J.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
(
18
),
3865
3868
(
1996
).
41.
H. J.
Monkhorst
and
J. D.
Pack
, “
Special points for Brillouin-zone integrations
,”
Phys. Rev. B
13
(
12
),
5188
5192
(
1976
).
42.
P.
Pulay
, “
Convergence acceleration of iterative sequences. The case of SCF iteration
,”
Chem. Phys. Lett.
73
(
2
),
393
398
(
1980
).
43.
G.
Makov
and
M. C.
Payne
, “
Periodic boundary conditions in ab initio calculations
,”
Phys. Rev. B
51
,
4014
(
1995
).
44.
H. A.
Tahini
,
A.
Chroneos
,
S. T.
Murphy
,
U.
Schwingenschloogl
, and
R. W.
Grimes
, “
Vacancies and defect levels in III-V semiconductors
,”
J. Appl. Phys.
114
(
6
),
063517
(
2013
).
45.
S. T.
Murphy
,
M. W. D.
Cooper
, and
R. W.
Grimes
, “
Point defects and non-stoichiometry in thoria
,”
Solid State Ionics
267
,
80
87
(
2014
).
46.
M. W.
Finnis
,
A. Y.
Lozovoi
, and
A.
Alavi
, “
The oxidation of NiAl: What can we learn from ab initio calculations?
,”
Annu. Rev. Mater. Res.
35
(
1
),
167
207
(
2005
).
47.
R. C.
Weast
,
M. J.
Astle
, and
W. H.
Beyer
,
CRC Handbook of Chemistry and Physics
(
CRC Press Inc.
,
Boca Raton, Florida
,
1984
).
48.
M.
Youssef
and
B.
Yildiz
, “
Intrinsic point-defect equilibria in tetragonal ZrO2: Density functional theory analysis with finite-temperature effects
,”
Phys. Rev. B
86
(
14
),
144109
(
2012
).
49.
A.
Eichler
, “
Tetragonal Y-doped zirconia: Structure and ion conductivity
,”
Phys. Rev. B
64
(
17
),
174103
(
2001
).
50.
M. V.
Ganduglia-Pirovano
,
A.
Hofmann
, and
J.
Sauer
, “
Oxygen vacancies in transition metal and rare earth oxides: Current state of understanding and remaining challenges
,”
Surf. Sci. Rep.
62
(
6
),
219
270
(
2007
).
51.
R. H.
French
,
S. J.
Glass
,
F. S.
Ohuchi
,
Y. N.
Xu
, and
W. Y.
Ching
, “
Experimental and theoretical determination of the electronic structure and optical properties of three phases of ZrO2
,”
Phys. Rev. B
49
(
8
),
5133
(
1994
).
52.
U.
Otgonbaatar
and
W.
Ma
, “
Effect of niobium on the defect chemistry and oxidation kinetics of tetragonal ZrO2
,”
J. Phys. Chem. C
118
,
20122
20131
(
2014
).
53.
W. E.
Berry
,
D. A.
Vaughan
, and
E. L.
White
, “
Hydrogen pickup during aqueous corrosion of zirconium alloys
,”
Corrosion
17
(
3
),
109t
117t
(
1961
).
54.
U.
Otgonbaatar
, “
The effect of niobium on the defect chemistry and corrosion kinetics of tetragonal ZrO2: A density functional theory study
,” Masters thesis,
Massachusetts Institute of Technology
, 2013.
55.
A.
Froideval
,
C.
Degueldre
,
C. U.
Segre
,
M. A.
Pouchon
, and
D.
Grolimund
, “
Niobium speciation at the metal/oxide interface of corroded niobium-doped Zircaloys: A X-ray absorption near-edge structure study
,”
Corros. Sci.
50
(
5
),
1313
1320
(
2008
).
56.
A.
Couet
,
A. T.
Motta
,
B.
de Gabory
, and
Z.
Cai
, “
Microbeam X-ray absorption near-edge spectroscopy study of the oxidation of Fe and Nb in zirconium alloy oxide layers
,”
J. Nucl. Mater.
452
(
1–3
),
614
627
(
2014
).
57.
A.
Couet
,
A. T.
Motta
, and
A.
Ambard
, “
The coupled current charge compensation model for zirconium alloy fuel cladding oxidation: I. Parabolic oxidation of zirconium alloys
,”
Corros. Sci.
(submitted).
58.
R. W.
Grimes
and
K. P. D.
Lagerlof
, “
The defect chemistry of sapphire
,”
Acta Materialia
46
(
16
),
5689
5700
(
1998
).
59.
A. H.
Heuer
and
M.
Ruhle
, “
On the nucleation of the martensitic transformation in zirconia (ZrO2)
,”
Acta Metall
33
(
12
),
2101
2112
(
1985
).
You do not currently have access to this content.