We investigate shock-induced deformation of columnar nanocrystalline Al with large-scale molecular dynamics simulations and implement orientation mapping (OM) and selected area electron diffraction (SAED) for microstructural analysis. Deformation mechanisms include stacking fault formation, pronounced twinning, dislocation slip, grain boundary (GB) sliding and migration, and lattice or partial grain rotation. GBs and GB triple junctions serve as the nucleation sites for crystal plasticity including twinning and dislocations, due to GB weakening, and stress concentrations. Grains with different orientations exhibit different densities of twins or stacking faults nucleated from GBs. GB migration occurs as a result of differential deformation between two grains across the GB. High strain rates, appropriate grain orientation and GBs contribute to deformation twinning. Upon shock compression, intra-grain dislocation and twinning nucleated from GBs lead to partial grain rotation and the formation of subgrains, while whole grain rotation is not observed. During tension, stress gradients associated with the tensile pulse give rise to intra-grain plasticity and then partial grain rotation. The simulated OM and SAED are useful to describe lattice/grain rotation, the formation of subgrains, GB migration and other microstructures.

1.
H.
Gleiter
,
Prog. Mater. Sci.
33
,
223
(
1989
).
3.
J.
Karch
,
R.
Birringer
, and
H.
Gleiter
,
Nature
330
,
556
(
1987
).
4.
R. W.
Siegel
, “Mechanical properties of nanophase materials,” in
Synthesis and Properties of Mechanically Alloyed and Nanocrystalline Materials
, edited by
D.
Fiorani
and
M.
Magini
(
Trans Tech Publications
,
Enfield, USA
, 1996).
5.
S. N.
Luo
,
T. C.
Germann
,
T. G.
Desai
,
D. L.
Tonks
, and
Q.
An
,
J. Appl. Phys.
107
,
123507
(
2010
).
6.
W.
Wunderlich
,
Y.
Ishida
, and
R.
Maurer
,
Scr. Metall. Mater.
24
,
403
(
1990
).
7.
J. Y.
Huang
,
Y. K.
Wu
, and
H. Q.
Ye
,
Acta Mater.
44
,
1211
(
1996
).
8.
J.
Schiotz
,
F. D.
Di Tolla
, and
K. W.
Jacobsen
,
Nature
391
,
561
(
1998
).
9.
V.
Yamakov
,
D.
Wolf
,
M.
Salazar
,
S. R.
Phillpot
, and
H.
Gleiter
,
Acta Mater.
49
,
2713
(
2001
).
10.
H.
Van Swygenhoven
,
M.
Spaczer
, and
A.
Caro
,
Acta Mater.
47
,
3117
(
1999
).
11.
P.
Keblinski
,
D.
Wolf
, and
H.
Gleiter
,
Interface Sci.
6
,
205
(
1998
).
12.
V.
Yamakov
,
D.
Wolf
,
S. R.
Phillpot
, and
H.
Gleiter
,
Acta Mater.
50
,
61
(
2002
).
13.
Y.
Wang
,
M.
Chen
,
F.
Zhou
, and
E.
Ma
,
Nature
419
,
912
(
2002
).
14.
L.
Lu
,
Y.
Shen
,
X.
Chen
,
L.
Qian
, and
K.
Lu
,
Science
304
,
422
(
2004
).
15.
L.
Lu
,
X.
Huang
,
X.
Chen
, and
K.
Lu
,
Science
323
,
607
(
2009
).
16.
W. S.
Zhao
,
N. R.
Tao
,
J. Y.
Guo
,
Q. H.
Lu
, and
K.
Luo
,
Scr. Mater.
53
,
745
(
2005
).
17.
A.
Rohatgi
,
K. S.
Vecchio
, and
T. G.
Gray
 III
,
Metall. Mater. Trans. A
32
,
135
(
2001
).
18.
T. H.
Blewitt
,
P. R.
Coltman
, and
J. K.
Redman
,
J. Appl. Phys.
28
,
651
(
1957
).
19.
J. A.
Venables
,
Deformation Twinning
(
Gordon and Breach
,
1964
), p.
7
.
20.
J. A.
Venables
,
Philos. Mag.
6
,
379
(
1961
).
21.
J. A.
Venables
,
J. Phys. Chem. Solids
25
,
693
(
1964
).
22.
E.
El-Danaf
,
S. R.
Kalindi
, and
R.
Doherty
,
Metall. Mater. Trans. A
30
,
1223
(
1999
).
23.
M. A.
Meyers
,
O.
Vohringer
, and
V. A.
Lubarda
,
Acta Mater.
49
,
4025
(
2001
).
24.
J. R.
Noonan
and
H. L.
Davis
,
Phys. Rev. B
29
,
4349
(
1984
).
25.
K. W.
Jacobsen
and
J.
Schiotz
,
Nat. Mater.
1
,
15
(
2002
).
26.
V.
Yamakov
,
D.
Wolf
,
S. R.
Phillpot
,
A. K.
Mukherjee
, and
H.
Gleiter
,
Nat. Mater.
1
,
45
(
2002
).
27.
V.
Yamakov
,
D.
Wolf
,
S. R.
Phillpot
, and
H.
Gleiter
,
Acta Mater.
50
,
5005
(
2002
).
28.
V.
Yamakov
,
D.
Wolf
,
S. R.
Phillpot
, and
H.
Gleiter
,
Acta Mater.
51
,
4135
(
2003
).
29.
M. W.
Chen
,
E.
Ma
,
K. J.
Hemker
,
H. W.
Sheng
,
Y. M.
Wang
, and
X. M.
Cheng
,
Science
300
,
1275
(
2003
).
30.
Y. T.
Zhu
,
X. Z.
Liao
,
S. G.
Srinivasan
,
Y. H.
Zhao
,
M. I.
Baskes
,
F.
Zhou
, and
E. J.
Lavernia
,
Appl. Phys. Lett.
85
,
5049
(
2004
).
31.
E. M.
Bringa
,
A.
Caro
,
Y.
Wang
,
M.
Victoria
,
J. M.
McNaney
,
B. A.
Remington
,
R. F.
Smith
,
B. R.
Torrala
, and
H.
Van Swygenhoven
,
Science
309
,
1838
(
2005
).
32.
M. Z.
Xiang
,
H. B.
Hu
, and
J.
Chen
,
J. Appl. Phys.
113
,
144312
(
2013
).
33.
A. M.
He
,
S. Q.
Duan
,
J. L.
Shao
,
P.
Wang
, and
S. N.
Luo
,
J. Chem. Phys.
139
,
074502
(
2013
).
34.
Y.
Cai
,
F. P.
Zhao
,
Q.
An
,
H. A.
Wu
,
W. A.
Goddard
 III
, and
S. N.
Luo
,
J. Chem. Phys.
139
,
164704
(
2013
).
35.
L.
Huang
,
W. Z.
Han
,
Q.
An
,
W. A.
Goddard
 III
, and
S. N.
Luo
,
J. Appl. Phys.
111
,
013508
(
2012
).
36.
F.
Cao
,
I. J.
Beyerlein
,
F. L.
Addessio
,
B. H.
Sencer
,
C. P.
Trujillo
,
E. K.
Cerreta
, and
G. T.
Gray
 III
,
Acta Mater.
58
,
549
(
2010
).
37.
S. N.
Luo
,
T. C.
Germann
,
D. L.
Tonks
, and
Q.
An
,
J. Appl. Phys.
108
,
093526
(
2010
).
38.
H. H.
Pham
,
B.
Arman
,
S. N.
Luo
, and
T.
Cagin
,
J. Appl. Phys.
109
,
086107
(
2011
).
39.
W. Z.
Han
,
Q.
An
,
S. N.
Luo
,
T. C.
Germann
,
D. L.
Tonks
, and
W. A.
goddard
,
Phys. Rev. B
85
,
024107
(
2012
).
40.
S. N.
Luo
,
T. C.
Germann
, and
D. L.
Tonks
,
J. Appl. Phys.
106
,
123518
(
2009
).
41.
T. G.
Gray
 III
,
Acta Metall.
36
,
1745
(
1988
).
42.
43.
R.
Ravelo
,
T. C.
Germann
,
O.
Guerrero
,
Q.
An
, and
B. L.
Holian
,
Phys. Rev. B
88
,
134101
(
2013
).
44.
W. E.
King
,
G. H.
Campbell
,
A.
Frank
,
B.
Reed
,
J. F.
Schmerger
,
B. J.
Siwick
,
B. C.
Stuart
, and
P. M.
Weber
,
J. Appl. Phys.
97
,
111101
(
2005
).
45.
B. W.
Reed
,
J. Appl. Phys.
100
,
034916
(
2006
).
46.
47.
X. Y.
Liu
,
F.
Ercolessi
, and
J. B.
Adams
,
Modell. Simul. Mater. Sci. Eng.
12
,
665
(
2004
).
48.
F.
Ercolessi
and
J. B.
Adams
,
Europhys. Lett.
26
,
583
(
1994
).
49.
D.
Wolf
,
V.
Yamakov
,
S. R.
Phillpot
,
A.
Mukherjee
, and
H.
Gleiter
,
Acta Mater.
53
,
1
(
2005
).
50.
H.
Van Swygenhoven
,
P. M.
Derlet
, and
A. G.
Froseth
,
Nat. Mater.
3
,
399
(
2004
).
51.
I. C.
Skidmore
and
E.
Morris
, in
Symposium on Thermodynamics of Nuclear Materials
(
IAEA, Vienna
,
1962
), p.
173
.
52.
W. H.
Isbell
,
F. H.
Shipman
, and
A. H.
Jones
, “
Hugoniot equation of state measurement for eleven materials to five megabars
,” General Motors Corp., Materials Science Laboratory Report MSL–68-13,
1968
.
53.
R. G.
Mcqueen
,
S. P.
Marsh
,
J. W.
Taylor
,
J. N.
Fritz
, and
W. J.
Carter
, in
High Velocity Impact Phenomena
, edited by
R.
Kinslow
(
Academic Press
,
New York
,
1970
), p.
293
.
54.
L. V.
Al'tshuler
and
B. S.
Chekin
, in
Proceedings of First All-Union Pulsed Pressures Symposium
(
VNIIFTRI
,
Moscow
,
1974
), Vol.
1
, p.
5
.
55.
M. A.
Meyers
,
Dynamic Behavior of Materials
(
Wiley
,
New York
,
1994
).
56.
S. N.
Luo
,
Q.
An
,
T. C.
Germann
, and
L. B.
Han
,
J. Appl. Phys.
106
,
013502
(
2009
).
57.
B.
Arman
,
S.-N.
Luo
,
T. C.
Germann
, and
T.
Cagin
,
Phys. Rev. B
81
,
144201
(
2010
).
58.
H. J.
Bunge
,
Quantitative Texture Analysis
(
DGM-Informationsgesellschaft
,
1993
).
59.
V.
Randle
and
O.
Engler
,
Introduction of Texture Analysis Macrotexture, Microtexture and Orientation Mapping
(
CRC Press
,
Boca Raton
,
2000
).
60.
S. P.
Coleman
,
M. M.
Sichani
, and
D. E.
Spearot
,
JOM
66
,
408
(
2014
).
61.
E.
Prince
,
International Table for Crystallography
, 3rd ed. (
Kluwer Academic Publishers
,
Norwell
,
2004
), p.
259
.
62.
D. B.
Williams
and
C. B.
Carter
,
Transmission Electron Microscopy, Part 2 Diffraction
, 2nd ed. (
Springer
,
New York
,
2009
), p.
211
.
63.
J. P.
Hirth
and
J.
Lothe
,
Theory of Dislocations
(
John Wiley & Sons, Inc.
,
1991
).
64.
J.
Weertman
and
J. R.
Weertman
,
Elementary Dislocation Theory
(
Oxford University Press
,
Oxford, New York
,
1992
).
65.
J. W.
Christian
and
S.
Mahajan
,
Prog. Mater. Sci
39
,
1
(
1995
).
66.
U.
Wolf
,
F.
Ernst
,
T.
Muschik
, and
M. W.
Finnis
,
Philos. Mag. A
66
,
991
(
1992
).
67.
J. H.
Jiang
,
Y.
Ding
,
F. Q.
Zuo
, and
A. D.
Shan
,
Scr. Mater.
60
,
905
(
2009
).
68.
Q.
Liu
,
D. J.
Jensen
, and
N.
Hansen
,
Acta Mater.
46
,
5819
(
1998
).
69.
D. H.
Warner
,
W. A.
Curtin
, and
S.
Qu
,
Nat. Mater.
6
,
876
(
2007
).
70.
B.
Cao
,
N. P.
Daphalapurkar
, and
K. T.
Ramesh
,
Meccanica
50
,
561
(
2014
).
71.
R. C.
Gifkins
,
Metall. Trans. A
7
,
1225
(
1976
).
72.
F. R. N.
Nabarro
,
Philos. Mag. A
16
,
231
(
1967
).
73.
M. G.
Zelin
and
A. K.
Mukherjee
,
Mater. Sci. Eng., A
208
,
210
(
1996
).
74.
C. M.
Li
,
J. Appl. Phys.
33
,
2958
(
1962
).
75.
F. J.
Humpherys
and
M.
Hatherly
,
Recrystallization and Related Annealing Phenomena
(
Elsevier Science
,
1995
).
76.
D.
Farkas
,
S.
Mohanty
, and
J.
Monk
,
Phys. Rev. Lett.
98
,
165502
(
2007
).
78.
J. R.
Greer
and
J. T. M.
De Hosson
,
Prog. Mater. Sci.
56
,
654
(
2011
).
79.
J.
Schiotz
and
K. W.
Jacobsen
,
Science
301
,
1357
(
2003
).
80.
J. W.
Cahn
and
J. E.
Taylor
,
Acta Mater.
52
,
4887
(
2004
).
81.
H.
Van Swygenhoven
and
P. M.
Derlet
,
Phys. Rev. B
64
,
224105
(
2001
).
82.
L. H.
Wang
,
J.
Teng
,
P.
Liu
,
A.
Hirata
,
E.
Ma
,
Z.
Zhang
,
M. W.
Chen
, and
X. D.
Han
,
Nat. Commun.
5
,
4402
(
2014
).
You do not currently have access to this content.