Cubic dielectric nanoparticles are promising candidates for futuristic low-loss, ultra-compact, nanophotonic applications owing to their larger optical coefficients, greater packing density, and relative ease of fabrication as compared to spherical nanoparticles; besides possessing negligible heating at nanoscale in contrast to their metallic counterparts. Here, we present the first theoretical demonstration of azimuthally symmetric, ultra-directional Kerker's-type scattering of simple dielectric nanocubes in visible and near-infrared regions via simultaneous excitation and interference of optically induced electric- and magnetic-resonances up to quadrupolar modes. Unidirectional forward-scattering by individual nanocubes is observed at the first generalized-Kerker's condition for backward-scattering suppression, having equal electric- and magnetic-dipolar responses. Both directionality and magnitude of these unidirectional-scattering patterns get enhanced where matching electric- and magnetic-quadrupolar responses spectrally overlap. While preserving azimuthal-symmetry and backscattering suppression, a nanocube homodimer provides further directionality improvement for increasing interparticle gap, but with reduced main-lobe magnitude due to emergence of side-scattering lobes from diffraction-grating effect. We thoroughly investigate the influence of interparticle gap on scattering patterns and propose optimal range of gap for minimizing side-scattering lobes. Besides suppressing undesired side-lobes, significant enhancement in scattering magnitude and directionality is attained with increasing number of nanocubes forming a linear chain. Optimal directionality, i.e., the narrowest main-scattering lobe, is found at the wavelength of interfering quadrupolar resonances; whereas the largest main-lobe magnitude is observed at the wavelength satisfying the first Kerker's condition. These unique optical properties of dielectric nanocubes thus can revolutionize their applications at visible and near-infrared regions in the fields of nanoantennas, nanolasers, photovoltaics, and even in biomedicine.

1.
L.
Novotny
and
B.
Hecht
,
Principles of Nano-Optics
(
Cambridge University Press
,
2012
).
2.
C. M.
Soukoulis
and
M.
Wegener
, “
Past achievements and future challenges in the development of three-dimensional photonic metamaterials
,”
Nat. Photonics
5
,
523
530
(
2011
).
3.
L.
Novotny
and
N.
Van Hulst
, “
Antennas for light
,”
Nat. Photonics
5
,
83
90
(
2011
).
4.
A.
Alu
and
N.
Engheta
, “
Tuning the scattering response of optical nanoantennas with nanocircuit loads
,”
Nat. Photonics
2
,
307
310
(
2008
).
5.
W.
Xiong
,
D.
Sikdar
,
M.
Walsh
,
K. J.
Si
,
Y.
Tang
,
Y.
Chen
,
R.
Mazid
,
M.
Weyland
,
I. D.
Rukhlenko
,
J.
Etheridge
 et al, “
Single-crystal caged gold nanorods with tunable broadband plasmon resonances
,”
Chem. Commun.
49
,
9630
9632
(
2013
).
6.
H. A.
Atwater
and
A.
Polman
, “
Plasmonics for improved photovoltaic devices
,”
Nat. Mater.
9
,
205
213
(
2010
).
7.
D.
Sikdar
,
I. D.
Rukhlenko
,
W.
Cheng
, and
M.
Premaratne
, “
Optimized gold nanoshell ensembles for biomedical applications
,”
Nanoscale Res. Lett.
8
,
142
146
(
2013
).
8.
C.
Wang
,
Z.
Jia
,
K.
Zhang
,
Y.
Zhou
,
R.
Fan
,
X.
Xiong
, and
R.
Peng
, “
Broadband optical scattering in coupled silicon nanocylinders
,”
J. Appl. Phys.
115
,
244312
(
2014
).
9.
S.
Lal
,
S.
Link
, and
N. J.
Halas
, “
Nano-optics from sensing to waveguiding
,”
Nat. Photonics
1
,
641
648
(
2007
).
10.
U.
Kreibig
and
M.
Vollmer
,
Optical Properties of Metal Clusters
(
Springer-Verlag
,
Berlin
,
1995
).
11.
C.
Kumarasinghe
,
M.
Premaratne
, and
G. P.
Agrawal
, “
Dielectric function of spherical dome shells with quantum size effects
,”
Opt. Express
22
,
11966
11984
(
2014
).
12.
A. W.
Powell
,
M. B.
Wincott
,
A. A. R.
Watt
,
H. E.
Assender
, and
J. M.
Smith
, “
Controlling the optical scattering of plasmonic nanoparticles using a thin dielectric layer
,”
J. Appl. Phys.
113
,
184311
(
2013
).
13.
Z.
Ruan
and
S.
Fan
, “
Superscattering of light from subwavelength nanostructures
,”
Phys. Rev. Lett.
105
,
013901
(
2010
).
14.
D.
Sikdar
,
I. D.
Rukhlenko
,
W.
Cheng
, and
M.
Premaratne
, “
Unveiling ultrasharp scattering–switching signatures of layered gold–dielectric–gold nanospheres
,”
J. Opt. Soc. Am. B
30
,
2066
2074
(
2013
).
15.
A.
Alu
and
N.
Engheta
, “
Cloaking a sensor
,”
Phys. Rev. Lett.
102
,
233901
(
2009
).
16.
D.
Sikdar
,
I. D.
Rukhlenko
,
W.
Cheng
, and
M.
Premaratne
, “
Effect of number density on optimal design of gold nanoshells for plasmonic photothermal therapy
,”
Biomed. Opt. Express
4
,
15
31
(
2013
).
17.
W.
Liu
,
J.
Zhang
,
B.
Lei
,
H.
Ma
,
W.
Xie
, and
H.
Hu
, “
Ultra-directional forward scattering by individual core-shell nanoparticles
,”
Opt. Express
22
,
16178
16187
(
2014
).
18.
R. Y.
Chou
,
G.
Lu
,
H.
Shen
,
Y.
He
,
Y.
Cheng
,
P.
Perriat
,
M.
Martini
,
O.
Tillement
, and
Q.
Gong
, “
A hybrid nanoantenna for highly enhanced directional spontaneous emission
,”
J. Appl. Phys.
115
,
244310
(
2014
).
19.
D.
Sikdar
,
I. D.
Rukhlenko
,
W.
Cheng
, and
M.
Premaratne
, “
Tunable broadband optical responses of substrate-supported metal/dielectric/metal nanospheres
,”
Plasmonics
9
,
659
672
(
2014
).
20.
T.
Pakizeh
and
M.
Kall
, “
Unidirectional ultracompact optical nanoantennas
,”
Nano Lett.
9
,
2343
2349
(
2009
).
21.
P.
Muhlschlegel
,
H. J.
Eisler
,
O. J. F.
Martin
,
B.
Hecht
, and
D. W.
Pohl
, “
Resonant optical antennas
,”
Science
308
,
1607
1609
(
2005
).
22.
R.
Zhou
,
J.
Ding
,
B.
Arigong
,
Y.
Lin
, and
H.
Zhang
, “
Design of a new broadband monopole optical nano-antenna
,”
J. Appl. Phys.
114
,
184305
(
2013
).
23.
B.
Rolly
,
B.
Stout
, and
N.
Bonod
, “
Boosting the directivity of optical antennas with magnetic and electric dipolar resonant particles
,”
Opt. Express
20
,
20376
20386
(
2012
).
24.
J. H.
Yan
,
Z. Y.
Lin
,
P.
Liu
, and
G. W.
Yang
, “
A design of si-based nanoplasmonic structure as an antenna and reception amplifier for visible light communication
,”
J. Appl. Phys.
116
,
154307
(
2014
).
25.
W.
Liu
,
A. E.
Miroshnichenko
,
D. N.
Neshev
, and
Y. S.
Kivshar
, “
Broadband unidirectional scattering by magneto-electric core–shell nanoparticles
,”
ACS Nano
6
,
5489
5497
(
2012
).
26.
R.
Gomez-Medina
,
B.
Garcia-Camara
,
I.
Suarez-Lacalle
,
F.
Gonzalez
,
F.
Moreno
,
M.
Nieto-Vesperinas
, and
J. J.
Saenz
, “
Electric and magnetic dipolar response of germanium nanospheres: Interference effects, scattering anisotropy, and optical forces
,”
J. Nanophotonics
5
,
053512
(
2011
).
27.
A.
Alu
and
N.
Engheta
, “
The quest for magnetic plasmons at optical frequencies
,”
Opt. Express
17
,
5723
5730
(
2009
).
28.
A. E.
Krasnok
,
A. E.
Miroshnichenko
,
P. A.
Belov
, and
Y. S.
Kivshar
, “
All-dielectric optical nanoantennas
,”
Opt. Express
20
,
20599
20604
(
2012
).
29.
Y. H.
Fu
,
A. I.
Kuznetsov
,
A. E.
Miroshnichenko
,
Y. F.
Yu
, and
B.
Lukyanchuk
, “
Directional visible light scattering by silicon nanoparticles
,”
Nat. Commun.
4
,
1527
(
2013
).
30.
D. S.
Filonov
,
A. P.
Slobozhanyuk
,
P. A.
Belov
, and
Y. S.
Kivshar
, “
Double-shell metamaterial coatings for plasmonic cloaking
,”
Phys. Status Solidi (RRL)
6
,
46
48
(
2012
).
31.
M.
Kerker
,
D. S.
Wang
, and
C. L.
Giles
, “
Electromagnetic scattering by magnetic spheres
,”
J. Opt. Soc. Am.
73
,
765
767
(
1983
).
32.
B.
Garcia-Camara
,
F.
Moreno
,
F.
Gonzalez
,
J. M.
Saiz
, and
G.
Videen
, “
Light scattering resonances in small particles with electric and magnetic properties
,”
J. Opt. Soc. Am. A
25
,
327
334
(
2008
).
33.
A. E.
Miroshnichenko
, “
Non-Rayleigh limit of the Lorenz-mie solution and suppression of scattering by spheres of negative refractive index
,”
Phys. Rev. A
80
,
013808
(
2009
).
34.
J. M.
Geffrin
,
B.
Garcia-Camara
,
R.
Gomez-Medina
,
P.
Albella
,
L. S.
Froufe-Perez
,
C.
Eyraud
,
A.
Litman
,
R.
Vaillon
,
F.
Gonzalez
,
M.
Nieto-Vesperinas
 et al, “
Magnetic and electric coherence in forward-and back-scattered electromagnetic waves by a single dielectric subwavelength sphere
,”
Nat. Commun.
3
,
1171
(
2012
).
35.
A. B.
Evlyukhin
,
C.
Reinhardt
,
A.
Seidel
,
B. S.
Lukyanchuk
, and
B. N.
Chichkov
, “
Optical response features of si-nanoparticle arrays
,”
Phys. Rev. B
82
,
045404
(
2010
).
36.
M.
Nieto-Vesperinas
,
R.
Gomez-Medina
, and
J.
Sáenz
, “
Angle-suppressed scattering and optical forces on submicrometer dielectric particles
,”
J. Opt. Soc. Am. A
28
,
54
60
(
2011
).
37.
A.
Garcia-Etxarri
,
R.
Gomez-Medina
,
L. S.
Froufe-Perez
,
C.
Lopez
,
L.
Chantada
,
F.
Scheffold
,
J.
Aizpurua
,
M.
Nieto-Vesperinas
, and
J. J.
Saenz
, “
Strong magnetic response of submicron silicon particles in the infrared
,”
Opt. Express
19
,
4815
4826
(
2011
).
38.
A. I.
Kuznetsov
,
A. E.
Miroshnichenko
,
Y. H.
Fu
,
J.
Zhang
, and
B.
Lukyanchuk
, “
Magnetic light
,”
Sci. Rep.
2
,
492
(
2012
).
39.
A. B.
Evlyukhin
,
S. M.
Novikov
,
U.
Zywietz
,
R. L.
Eriksen
,
C.
Reinhardt
,
S. I.
Bozhevolnyi
, and
B. N.
Chichkov
, “
Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region
,”
Nano Lett.
12
,
3749
3755
(
2012
).
40.
S.
Person
,
M.
Jain
,
Z.
Lapin
,
J. J.
Saenz
,
G.
Wicks
, and
L.
Novotny
, “
Demonstration of zero optical backscattering from single nanoparticles
,”
Nano Lett.
13
,
1806
1809
(
2013
).
41.
U.
Zywietz
,
A. B.
Evlyukhin
,
C.
Reinhardt
, and
B. N.
Chichkov
, “
Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses
,”
Nat. Commun.
5
,
3402
(
2014
).
42.
H.
Chan
,
A.
Demortiere
,
L.
Vukovic
,
P.
Kral
, and
C.
Petit
, “
Colloidal nanocube supercrystals stabilized by multipolar coulombic coupling
,”
ACS Nano
6
,
4203
4213
(
2012
).
43.
E.
Massa
,
S. A.
Maier
, and
V.
Giannini
, “
An analytical approach to light scattering from small cubic and rectangular cuboidal nanoantennas
,”
New J. Phys.
15
,
063013
(
2013
).
44.
I. O.
Sosa
,
C.
Noguez
, and
R. G.
Barrera
, “
Optical properties of metal nanoparticles with arbitrary shapes
,”
J. Phys. Chem. B
107
,
6269
6275
(
2003
).
45.
M.
Alsawafta
,
M.
Wahbeh
, and
V.-V.
Truong
, “
Simulated optical properties of gold nanocubes and nanobars by discrete dipole approximation
,”
J. Nanomater.
2012
,
283230
(
2012
).
46.
A. B.
Evlyukhin
,
C.
Reinhardt
,
E.
Evlyukhin
, and
B. N.
Chichkov
, “
Multipole analysis of light scattering by arbitrary-shaped nanoparticles on a plane surface
,”
J. Opt. Soc. Am. B
30
,
2589
2598
(
2013
).
47.
C. H.
Papas
,
Theory of Electromagnetic Wave Propagation
(
Courier Dover Publications
,
2013
).
48.
T.
Kaelberer
,
V. A.
Fedotov
,
N.
Papasimakis
,
D. P.
Tsai
, and
N. I.
Zheludev
, “
Toroidal dipolar response in a metamaterial
,”
Science
330
,
1510
1512
(
2010
).
49.
Y.-W.
Huang
,
W. T.
Chen
,
P. C.
Wu
,
V.
Fedotov
,
V.
Savinov
,
Y. Z.
Ho
,
Y.-F.
Chau
,
N. I.
Zheludev
, and
D. P.
Tsai
, “
Design of plasmonic toroidal metamaterials at optical frequencies
,”
Opt. Express
20
,
1760
1768
(
2012
).
50.
C. G.
Gray
, “
Magnetic multipole expansions using the scalar potential
,”
Am. J. Phys.
47
,
457
459
(
1979
).
51.
A. B.
Evlyukhin
,
C.
Reinhardt
, and
B. N.
Chichkov
, “
Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation
,”
Phys. Rev. B
84
,
235429
(
2011
).
52.
G.
Boudarham
,
R.
Abdeddaim
, and
N.
Bonod
, “
Enhancing the magnetic field intensity with a dielectric gap antenna
,”
Appl. Phys. Lett.
104
,
021117
(
2014
).
53.
G. W.
Mulholland
,
C. F.
Bohren
, and
K. A.
Fuller
, “
Light scattering by agglomerates: Coupled electric and magnetic dipole method
,”
Langmuir
10
,
2533
2546
(
1994
).
54.
B. T.
Draine
and
P. J.
Flatau
, “
Discrete-dipole approximation for scattering calculations
,”
J. Opt. Soc. Am. A
11
,
1491
1499
(
1994
).
55.
P.
Gay-Balmaz
and
O. J. F.
Martin
, “
A library for computing the filtered and non-filtered 3d green's tensor associated with infinite homogeneous space and surfaces
,”
Comput. Phys. Commun.
144
,
111
120
(
2002
).
56.
M. A.
Yurkin
,
M.
Min
, and
A. G.
Hoekstra
, “
Application of the discrete dipole approximation to very large refractive indices: Filtered coupled dipoles revived
,”
Phys. Rev. E
82
,
036703
(
2010
).
57.
B. T.
Draine
and
P. J.
Flatau
, User Guide for the Discrete Dipole Approximation Code DDSCAT 7.3, 2013, see http://arxiv.org/abs/1305.6497.
You do not currently have access to this content.