Organic magnetoresistance (OMAR) can be caused by either single carrier (bipolaron) or double carriers (electron-hole)-based mechanisms. In order to consider applications for OMAR, it is important to control the mechanism present in the device. In this paper, we report the effect of traps on OMAR resulting of disorder at the interface between the organic active layer with the hole injection layer [poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate): PEDOT:PSS]. It has been found that while the single carriers OMAR is enhanced by the presence of traps, the double carriers OMAR is totally removed in a sample with a high interface trap density. The reasons for these results are discussed based on the impedance spectroscopy measurements. First, the mechanism (single or double carriers) responsible of the OMAR was determined with the support of the capacitance measurement. Then, the influence of traps was discussed with the Nyquist diagrams and phase angle-frequency plots of the samples. The results suggested that with a rough interface and thus high disorder, the presence of traps enhanced the bipolaron formation. Traps also acted as recombination centers for electron-hole pairs, which prevented the double carriers OMAR in devices with a rough interface. On the other hand, with a low trap density, i.e., with a smooth surface, the single carrier OMAR decreased, and double carriers OMAR appeared. The sign of the OMAR could then be controlled by simply sweeping the bias voltage. This work demonstrated that the roughness at the interface is important for controlling OMAR and its reproducibility, and that the combination of OMAR measurement and impedance spectroscopy is helpful for clarifying the processes at the interface.

1.
T. L.
Francis
,
Ö.
Mermer
,
G.
Veeraraghavan
, and
M.
Wohlgenannt
,
New J. Phys.
6
,
185
(
2004
).
2.
V. N.
Prigodin
,
J. D.
Bergeson
,
D. M.
Lincoln
, and
A. J.
Epstein
,
Synth. Met.
156
,
757
761
(
2006
).
3.
P. A.
Bobbert
,
T. D.
Nguyen
,
F. W. A.
van Oost
,
B.
Koopmans
, and
M.
Wohlgenannt
,
Phys. Rev. Lett.
99
,
216801
(
2007
).
4.
B.
Hu
,
L.
Yan
, and
M.
Shao
,
Adv. Mater.
21
,
1500
1516
(
2009
).
5.
Y.
Zhang
,
Q.
Zhang
,
Y.
Lei
, and
Z.
Xiong
,
Org. Electron.
14
,
2505
2509
(
2013
).
6.
S. T.
Pham
,
Y.
Kawasugi
, and
H.
Tada
,
Appl. Phys. Lett.
103
,
143301
(
2013
).
7.
T.
Reichert
and
T. P. I.
Saragi
,
Org. Electron.
13
,
377
383
(
2012
).
8.
H. J.
Jang
,
S. J.
Pookpanratana
,
A. N.
Brigeman
,
R. J.
Kline
,
J. I.
Basham
,
D. J.
Gundlach
,
C. A.
Hacker
,
O. A.
Kirillov
,
O. D.
Jurchescu
, and
C. A.
Richter
,
ACS Nano
8
,
7192
7201
(
2014
).
9.
W. J.
Baker
,
K.
Ambal
,
D. P.
Waters
,
R.
Baarda
,
H.
Morishita
,
K.
van Schooten
,
D. R.
McCamey
,
J. M.
Lupton
, and
C.
Boehme
,
Nat. Commun.
3
, Article number
898
(
2012
).
10.
P.
Janssen
,
M.
Cox
,
S. H. W.
Wouters
,
M.
Kemerink
,
M. M.
Wienk
, and
B.
Koopmans
,
Nat. Commun.
4
,
3286
(
2013
).
11.
A.
Kahn
,
N.
Koch
, and
W.
Gao
,
J. Polym. Sci. B
41
,
2529
2548
(
2003
).
12.
T. D.
Nguyen
,
Y.
Sheng
,
M.
Wohlgenannt
, and
T. D.
Anthopoulos
,
Synth. Met.
157
,
930
934
(
2007
).
13.
Y.
Sheng
,
T. D.
Nguyen
,
G.
Veeraraghavan
,
Ö.
Mermer
,
M.
Wohlgenannt
,
S.
Qiu
, and
U.
Scherf
,
Phys. Rev. B
74
,
045213
(
2006
).
14.
F. L.
Bloom
,
W.
Wagemans
,
M.
Kemerink
, and
B.
Koopmans
,
Appl. Phys. Lett.
93
,
263302
(
2008
).
15.
W.
Wagemans
,
P.
Janssen
,
E. H. M.
van der Heijden
,
M.
Kemerink
, and
B.
Koopmans
,
Appl. Phys. Lett.
97
,
123301
(
2010
).
16.
F.
Wang
,
J.
Rybicki
,
R.
Lin
,
K. A.
Hutchinson
,
J.
Hou
, and
M.
Wohlgenannt
,
Synth. Met.
161
,
622
627
(
2011
).
17.
T. K.
Djidjou
,
T.
Basel
, and
A.
Rogachev
,
J. Appl. Phys.
112
,
024511
(
2012
).
18.
T. K.
Djidjou
,
T.
Basel
, and
A.
Rogachev
,
Appl. Phys. Lett.
101
,
093303
(
2012
).
19.
M.
Fayolle
,
M.
Yamaguchi
,
S. T.
Pham
,
T.
Ohto
, and
H.
Tada
,
Int. J. Nanotechnol.
12
,
238
247
(
2015
).
20.
F.
Fabregat-Santiago
,
J.
Bisquert
,
G.
Garcia-Belmonte
,
G.
Boschloo
, and
A.
Hagfeldt
,
Sol. Energy Mater. Sol. Cells
87
,
117
131
(
2005
).
21.
J.
Lin
,
M.
Weis
,
D.
Taguchi
,
T.
Manaka
, and
M.
Iwamoto
,
Thin Solid Films
518
,
448
451
(
2009
).
22.
M.
Schmeits
,
J. Appl. Phys.
101
,
084508
(
2007
).
23.
S.
Ishihara
,
H.
Hase
,
T.
Okachi
, and
H.
Naito
,
J. Appl. Phys.
110
,
036104
(
2011
).
24.
B. C.
Thompson
and
J. M. J.
Fréchet
,
Angew. Chem. Int. Ed.
47
,
58
77
(
2008
).
25.
S.
Kirchmeyer
and
K.
Reuter
,
J. Mater. Chem.
15
,
2077
2088
(
2005
).
26.
W.
Wagemans
,
F. L.
Bloom
,
P. A.
Bobbert
,
M.
Wohlgenannt
, and
B.
Koopmans
,
J. Appl. Phys.
103
,
07F303
(
2008
).
27.
J.
Bisquert
,
Phys. Chem. Chem. Phys.
13
,
4679
4685
(
2011
).
28.
H. H. P.
Gommans
,
M.
Kemerink
,
G. G.
Andersson
, and
R. M. T.
Pijper
,
Phys. Rev. B
69
,
155216
(
2004
).
29.
E.
Ehrenfreund
,
C.
Lungenschmied
,
G.
Denler
,
H.
Neugebauer
, and
N. S.
Sariciftci
,
Appl. Phys. Lett.
91
,
012112
(
2007
).
30.
E.
Barsoukov
and
J. R.
Macdonald
,
Impedance Spectroscopy Theory, Experiment, and Applications
, 2nd ed. (
Wiley
,
2005
).
You do not currently have access to this content.