This work presents an experimental study on the specific quantitative contributions of antireflective and effective surface areas on the photocatalytic and antibacterial properties of rutile TiO2 nanospikes. They are studied when continuously distributed over the whole surface and when integrated into well-defined microstructures. The nanospikes were produced following MeV ion beam irradiation of bulk rutile TiO2 single crystals and subsequent chemical etching. The ion beam irradiation generated embedded isolated crystalline nanoparticles inside an etchable amorphous TiO2 layer, and nanospikes fixed to the not etchable TiO2 bulk substrate. The produced nanospikes are shown to resist towards aggressive chemical environments and act as an efficient UV antireflective surface. The photocatalytic activity experiments were performed under the ISO 10678:2010 protocol. The photonic and quantum efficiency are reported for the studied samples. The combined micro- and nanostructured surface triples the photonic efficiency compared to the initial flat surface. Results also revealed that the antireflective effect, due to the nanostructuring, is the dominating factor compared to the increase of surface area, for the observed photocatalytic response. The obtained results may be taken as a general strategy to design and precisely evaluate photoactive nanostructures.

1.
A.
Fujishima
,
X.
Zhang
, and
D. A.
Tryk
,
Surf. Sci. Rep.
63
,
515
(
2008
).
2.
X.
Qu
,
J.
Brame
,
Q.
Li
, and
P. J. J.
Alvarez
,
Acc. Chem. Res.
46
,
834
(
2013
).
3.
R.
Daghrir
,
P.
Drogui
, and
D.
Robert
,
Ind. Eng. Chem. Res.
52
,
3581
(
2013
).
4.
M.
Xu
,
Y.
Gao
,
E.
Martinez Moreno
,
M.
Kunst
,
M.
Muhler
,
Y.
Wang
,
H.
Idriss
, and
C.
Wöll
,
Phys. Rev. Lett.
106
,
138302
(
2011
).
5.
T.
Luttrell
,
S.
Halpegamage
,
J.
Tao
,
A.
Kramer
,
E.
Sutter
, and
M.
Batzill
,
Sci. Rep.
4
,
4043
(
2014
).
6.
T.
Ohno
,
K.
Sarukawa
, and
M.
Matsumura
,
J. Phys. Chem. B
105
,
2417
(
2001
).
7.
L.
Zhang
,
B. K.
Miller
, and
P. A.
Crozier
,
Nano Lett.
13
,
679
(
2013
).
8.
S.
Guldin
,
P.
Kohn
,
M.
Stefik
,
J.
Song
,
G.
Divitini
,
F.
Ecarla
,
C.
Ducati
,
U.
Wiesner
, and
U.
Steiner
,
Nano Lett.
13
,
5329
(
2013
).
9.
H. J.
Hwang
,
A.
Boukai
, and
P.
Yang
,
Nano Lett.
9
,
410
(
2009
).
10.
H.
Li
,
B.
Jiang
,
R.
Schaller
,
J.
Wu
, and
J.
Jiao
,
J. Phys. Chem. C
114
,
11375
(
2010
).
11.
J.
Cai
,
J.
Ye
,
S.
Chen
,
X.
Zhao
,
D.
Zhang
,
S.
Chen
,
Y.
Ma
,
S.
Jin
, and
L.
Qi
,
Energy Environ. Sci.
5
,
7575
(
2012
).
12.
A.
Hu
,
R.
Liang
,
X.
Zhang
,
S.
Kurdi
,
D.
Luong
,
H.
Huang
,
P.
Peng
,
E.
Marzbanrad
,
K. D.
Oakes
,
Y.
Zhou
, and
M. R.
Servos
,
J. Photochem. Photobio. A
256
,
7
(
2013
).
13.
A. B.
Murphy
,
Sol. Energy Mater. Sol. Cells
91
,
1326
(
2007
).
14.
M.
Cho
,
H.
Chung
,
W.
Choi
, and
J.
Yoon
,
Water Res.
38
,
1069
(
2004
).
15.
E. P.
Ivanova
,
J.
Hasan
,
H. K.
Webb
,
G.
Gervinskas
,
S.
Juodkazis
,
V. K.
Truong
,
A. H.
Wu
,
R. N.
Lamb
,
V. A.
Baulin
,
G. S.
Watson
,
J. A.
Watson
,
D. E.
Mainwaring
, and
R. J.
Crawford
,
Nat. Commun.
4
,
2838
(
2013
).
16.
R.
Spohr
,
Ion Tracks and Microtechnology, Principles and Applications
(
Vieweg & Sohn Verlagsgesellschaft mbH: Braunschweig
,
1990
).
17.
K.
Nomura
,
T.
Nakanishi
,
Y.
Nagasawa
,
Y.
Ohki
,
K.
Awazu
,
M.
Fujimaki
,
N.
Kobayashi
,
S.
Ishii
, and
K.
Shima
,
Phys. Rev. B
68
,
064106
(
2003
).
18.
R.
Sanz
,
A.
Johansson
,
M.
Skupinski
,
J.
Jensen
,
G.
Possnert
,
M.
Boman
,
M.
Vázquez
, and
K.
Hjort
,
Nano Lett.
6
,
1065
(
2006
).
19.
R.
Sanz
,
J.
Jensen
,
A.
Johansson
,
M.
Skupinski
,
G.
Possnert
,
M.
Boman
,
M.
Hernandez-Vélez
,
M.
Vazquez
, and
K.
Hjort
,
Nanotechnology
18
,
305303
(
2007
).
20.
R.
Sanz
,
M.
Jaafar
,
M.
Hernández-Vélez
,
A.
Asenjo
,
M.
Vázquez
, and
J.
Jensen
,
Nanotechnology
21
,
235301
(
2010
).
21.
J.
Jensen
,
M.
Skupinski
,
K.
Hjort
, and
R.
Sanz
,
Nucl. Instrum. Methods Phys. Res. B
266
,
3113
(
2008
).
22.
M.
Skupinski
,
R.
Sanz
, and
J.
Jensen
,
Nucl. Instrum. Methods Phys. Res. B
257
,
777
(
2007
).
23.
R.
Wang
,
N.
Sakai
,
A.
Fujishima
,
T.
Watanabe
, and
K.
Hashimoto
,
J. Phys. Chem. B
103
,
2188
(
1999
).
24.
J.-Y.
Zheng
,
S.-H.
Bao
,
Y.
Guo
, and
P.
Jin
,
ACS Appl. Mater. Interfaces
6
,
1351
(
2014
).
26.
V.
Solanki
,
S.
Majumder
,
I.
Mishra
,
P.
Dash
,
C.
Singh
,
D.
Kanjilal
, and
S.
Varma
,
Appl. Phys. Lett.
98
,
053105
(
2011
).
27.
S.
Hashimoto
,
A.
Tanaka
,
A.
Murata
, and
T.
Sakurada
,
Surf. Sci.
556
,
22
(
2004
).
28.
H. M.
Branz
,
V. E.
Yost
,
S.
Ward
,
K. M.
Jones
,
B.
To
, and
P.
Stradins
,
Appl. Phys. Lett.
94
,
231121
(
2009
).
29.
Fine ceramics (advanced ceramics, advanced technical ceramics) — Determination of photocatalytic activity of surfaces in an aqueous medium by degradation of methylene blue. ISO 10678:2010(E). International Organization for Standardization (
2010
). Switzerland.
30.
A.
Mills
,
C.
Hill
, and
P. K. J.
Robertson
,
J. Photochem. Photobiol. A.
237
,
7
(
2012
).
31.
M.
Ishimaru
,
Y.
Hirotsu
,
F.
Li
, and
K. E.
Sickafus
,
Appl. Phys. Lett.
77
,
4151
(
2000
).
32.
K.
Awazu
,
X.
Wang
,
M.
Fujimaki
,
T.
Komatsubara
,
T.
Ikeda
, and
Y.
Ohki
,
J. Appl. Phys.
100
,
044308
(
2006
).
33.
A.
Rivera
,
M. L.
Crespillo
,
J.
Olivares
,
R.
Sanz
,
J.
Jensen
, and
F.
Agulló-López
,
Nucl. Instrum. Methods Phys. Res. B
268
,
3122
3126
(
2010
).
34.
J. V.
Pérez-Girón
,
M.
Hirtz
,
C.
McAtamney
,
A. P.
Bell
,
J. A.
Mas
,
M.
Jaafar
,
O.
De Luis
,
H.
Fuchs
,
J.
Jensen
, and
R.
Sanz
,
Nucl. Instrum. Methods Phys. Res. B
339
,
67
(
2014
).
35.
J.
Ryu
and
W.
Choi
,
Environ. Sci. Technol.
42
,
294
(
2008
).
36.
N.
Serpone
and
A.
Salinaro
,
Pure Appl. Chem.
71
,
303
(
1999
).
37.
R.
Fateh
,
R.
Dillert
, and
D.
Bahnemann
,
ACS Appl. Mater. Interfaces
6
,
2270
(
2014
).
38.
C.
Sendner
,
D.
Horinek
,
L.
Bocquet
, and
R. R.
Netz
,
Langmuir
25
,
10768
(
2009
).
39.
G.
Shen
,
X. H.
Zhang
,
Y.
Ming
,
L.
Zhang
,
Y.
Zhang
, and
J.
Hu
,
J. Phys. Chem. C
112
,
4029
(
2008
).
40.
B.
Liu
,
K.
Nakata
,
S.
Liu
,
M.
Sakai
,
T.
Ochiai
,
T.
Murakami
,
K.
Takagi
, and
A.
Fujishima
,
J. Phys. Chem. C
116
,
7471
(
2012
).
41.
A. Y.
Ahmed
,
T. A.
Kandiel
,
T.
Oekermann
, and
D.
Bahnemann
,
J. Phys. Chem. Lett.
2
,
2461
(
2011
).
42.
M. K.
Nowotny
,
L. R.
Sheppard
,
T.
Bak
, and
J.
Nowotny
,
J. Phys. Chem. C
112
,
5275
(
2008
).
43.
L.
Liu
,
P. Y.
Yu
,
X.
Chen
,
S. S.
Mao
, and
D. Z.
Shen
,
Phys. Rev. Lett.
111
,
065505
(
2013
).
You do not currently have access to this content.