Theoretical analysis of ultra-short phenomena occurring during the positive streamer propagation in atmospheric pressure air is presented. Motivated by experimental results obtained with tens-of-picoseconds and tens-of-microns precision, it is shown that when the streamer head passes a spatial coordinate, emission maxima from N2 and N2+ radiative states follow with different delays. These different delays are caused by differences in the dynamics of populating the radiative states, due to different excitation and quenching rates. Associating the position of the streamer head with the maximum value of the self-enhanced electric field, a delay of 160 ps was experimentally found for the peak emission of the first negative system of N2+. A delay dilatation was observed experimentally on early-stage streamers and the general mechanism of this phenomenon is clarified theoretically. In the case of the second positive system of N2, the delay can reach as much as 400 ps. In contrast to the highly nonlinear behavior of streamer events, it is shown theoretically that emission maximum delays linearly depend on the ratio of the streamer radius and its velocity. This is found to be one of the fundamental streamer features and its use in streamer head diagnostics is proposed. Moreover, radially resolved spectra are synthesized for selected subsequent picosecond moments in order to visualize spectrometric fingerprints of radial structures of N2(C3Πu) and N2+(B2Σu+) populations created by streamer-head electrons.

1.
E.
Marode
,
D.
Djermoune
,
P.
Dessante
,
C.
Deniset
,
P.
Segur
,
F.
Bastien
,
A.
Bourdon
, and
C.
Laux
,
Plasma Phys. Controlled Fusion
51
,
124002
(
2009
).
2.
U.
Ebert
,
C.
Montijn
,
T. M. P.
Briels
,
W.
Hundsdorfer
,
B.
Meulenbroek
,
A.
Rocco
, and
E. M.
van Veldhuizen
,
Plasma Sources Sci. Technol.
15
,
S118
S129
(
2006
).
3.
I. N.
Kosarev
,
V. I.
Khorunzhenko
,
E. I.
Mintoussov
,
P. N.
Sagulenko
,
N. A.
Popov
, and
S. M.
Starikovskaia
,
Plasma Sources Sci. Technol.
21
,
045012
(
2012
).
4.
T. M. P.
Briels
,
J.
Kos
,
G. J. J.
Winands
,
E. M.
van Veldhuizen
, and
U.
Ebert
,
J. Phys. D: Appl. Phys.
41
,
234004
(
2008
).
5.
Yu.
Akishev
,
G.
Aponin
,
A.
Balakirev
,
M.
Grushin
,
A.
Petryakov
,
A.
Karalnik
, and
N.
Trushkin
,
J. Phys. D: Appl. Phys.
46
,
135204
(
2013
).
6.
S.
Chen
,
R.
Zeng
, and
C.
Zhuang
,
J. Phys. D: Appl. Phys.
46
,
375203
(
2013
).
7.
T.
Huiskamp
,
A. J. M.
Pemen
,
W. F. L. M.
Hoeben
,
F. J. C. M.
Beckers
, and
E. J. M.
van Heesch
,
J. Phys. D: Appl. Phys.
46
,
165202
(
2013
).
8.
M. M.
Nudnova
and
A. Yu.
Starikovskii
,
J. Phys. D: Appl. Phys.
41
,
234003
(
2008
).
9.
M.
Černák
,
D.
Kováčik
,
J.
Ráhel'
,
P.
St'ahel
,
A.
Zahoranová
,
J.
Kubincová
,
A.
Tóth
, and
L.
Černáková
,
Plasma Phys. Controlled Fusion
53
,
124031
(
2011
).
10.
U.
Ebert
,
S.
Nijdam
,
C.
Li
,
A.
Luque
,
T.
Briels
, and
E.
van Veldhuizen
,
J. Geophys. Res.
115
,
A00E43
, doi: (
2010
).
11.
T.
Kanmae
,
H. C.
Stenbaek-Nielsen
,
M. G.
McHarg
, and
R. K.
Haaland
,
J. Phys. D: Appl. Phys.
45
,
275203
(
2012
).
12.
A.
Luque
and
F. J.
Gordillo-Vázquez
,
Geophys. Res. Lett.
38
,
L04808
, doi: (
2011
).
13.
V. P.
Pasko
,
Plasma Sources Sci. Technol.
16
,
S13
S29
(
2007
).
14.
T.
Neubert
,
M.
Rycroft
,
T.
Farges
,
E.
Blanc
,
O.
Chanrion
,
E.
Arnone
,
A.
Odzimek
,
N.
Arnold
,
C. F.
Enell
,
E.
Turunen
,
T.
Boesinger
,
A.
Mika
,
C.
Haldoupis
,
R. J.
Steiner
,
O.
van der Velde
,
S.
Soula
,
P.
Berg
,
F.
Boberg
,
P.
Thejll
,
B.
Christiansen
,
M.
Ignaccolo
,
M.
Fuellekrug
,
P. T.
Verronen
,
J.
Montanya
, and
N.
Crosby
,
Surv. Geophys.
29
(
2
),
71
137
(
2008
).
15.
G. V.
Naidis
,
Phys. Rev. E
79
,
057401
(
2009
).
16.
Z.
Bonaventura
,
A.
Bourdon
,
S.
Celestin
, and
V.
Pasko
,
Plasma Sources Sci. Technol.
20
,
035012
(
2011
).
17.
S.
Celestin
and
V. P.
Pasko
,
Geophys. Res. Lett.
37
,
L07804
, doi: (
2010
).
18.
M.
Šimek
,
J. Phys. D: Appl. Phys.
47
,
463001
(
2014
).
19.
P.
Paris
,
M.
Aints
,
F.
Valk
,
T.
Plank
,
A.
Haljaste
,
K. V.
Kozlov
, and
H.-E.
Wagner
,
J. Phys. D: Appl. Phys.
38
,
3894
3899
(
2005
).
20.
S.
Pancheshnyi
,
J. Phys. D: Appl. Phys.
39
,
1708
1710
(
2006
).
21.
P.
Paris
,
M.
Aints
,
F.
Valk
,
T.
Plank
,
A.
Haljaste
,
K. V.
Kozlov
, and
H.-E.
Wagner
,
J. Phys. D: Appl. Phys.
39
,
2636
2639
(
2006
).
22.
P.
Rajasekaran
,
C.
Ruhrmann
,
N.
Bibinov
, and
P.
Awakowicz
,
J. Phys. D: Appl. Phys.
44
,
485205
(
2011
).
23.
V.
Stojanovic
,
J.
Bozin
,
Z.
Lj Petrovic
, and
B. M.
Jelenkovic
,
Phys. Rev. A
42
,
4983
(
1990
).
24.
S. A.
Stanfield
,
J.
Menart
, and
C.
DeJoseph
, Jr.
,
AIAA J.
48th AIAA Aerospace Sciences Meeting, Orlando, Florida, 2009.
25.
A.
Omholt
,
The Optical Aurora
(
Springer-Verlag
,
Berlin
,
1971
).
26.
I.
Gallimberti
,
J. K.
Hepworth
, and
R. C.
Klewe
,
J. Phys. D: Appl. Phys.
7
,
880
(
1974
).
27.
G.
Hartmann
, “
Spectroscopie de la decharge couronne: etude des mechanismes de collisions dans le dard (streamer)
,” Ph.D. thesis (
Universite de Paris-Sud
, Centre d'Orsay,
1977
).
28.
E.
Marode
,
J. Appl. Phys.
46
,
2005
(
1975
).
29.
N.
Ikuta
and
K.
Kondo
, in
IEE Proceedings of 4th International Conference on Gas Discharges
, 7–10 September
1976
.
30.
K.
Kondo
and
N.
Ikuta
,
J. Phys. Soc. Jpn.
59
,
3203
(
1990
).
31.
Y. L. M.
Creyghton
, “
Pulsed positive corona discharges: Fundamental study and application to flue gas treatment
,” Ph.D. thesis (
TU Eindhoven
, The Netherlands,
1994
).
32.
K. V.
Kozlov
,
H.-E.
Wagner
,
R.
Brandenburg
, and
P.
Michel
,
J. Phys. D: Appl. Phys.
34
,
3164
(
2001
).
33.
M. C.
Wang
and
E. E.
Kunhardt
,
Phys. Rev. A
42
,
2366
2373
(
1990
).
34.
A. A.
Kulikovsky
,
Phys. Rev. E
57
,
7066
(
1998
).
35.
A. A.
Matveev
and
V. P.
Silakov
, “
Method of calculation of specific radiant emitting of the bands of 1- and 2+ systems of nitrogen in the non-equilibrium nitrogen oxygen plasma
,” in
Physics and Technology of Electric Power Transmission
(
MPEI
,
Moscow
,
1998
), pp.
201
218
(in Russian).
36.
A. F.
Djakov
,
Yu. K.
Bobrov
,
L. N.
Bobrova
, and
Yu. V.
Yourguelenas
, “
Streamer discharge plasma parameters determination in air on a base of a measurement of radiation of the molecular bands of nitrogen
,” in
Physics and Technology of Electric Power Transmission
(
MPEI
,
Moscow
,
1998
), pp
219
233
(in Russian).
37.
A. F.
Djakov
,
Yu. K.
Bobrov
, and
Yu. V.
Yourguelenas
, “
Modelling of a positive streamer in air in a non-uniform external field
,” in
Physics and Technology of Electric Power Transmission
(
MPEI
,
Moscow
,
1998
), pp
161
200
(in Russian).
38.
Yu. V.
Shcherbakov
, “
Physical parameters of streamer in air
,”
Internal Report of High Voltage Research Center No. 3237–B97. 45c Moscow Region
, Russia,
1997
(in Russian).
39.
Yu. V.
Shcherbakov
and
R.
Sigmond
,
J. Phys. D: Appl. Phys.
40
,
460
(
2007
).
40.
Yu. V.
Shcherbakov
and
R.
Sigmond
,
J. Phys. D: Appl. Phys.
40
,
474
(
2007
).
41.
T.
Hoder
,
M.
Černák
,
J.
Paillol
,
D.
Loffhagen
, and
R.
Brandenburg
,
Phys. Rev. E
86
,
055401(R)
(
2012
).
42.
T.
Hoder
,
R.
Brandenburg
,
R.
Basner
,
K.-D.
Weltmann
,
K. V.
Kozlov
, and
H.-E.
Wagner
,
J. Phys. D: Appl. Phys.
43
,
124009
(
2010
).
43.
F.
Valk
,
M.
Aints
,
P.
Paris
,
T.
Plank
,
J.
Maksimov
, and
A.
Tamm
,
J. Phys. D: Appl. Phys.
43
,
385202
(
2010
).
44.
G.
Dilecce
,
P. F.
Ambrico
, and
S.
DeBenedictis
,
Chem. Phys. Lett.
444
,
39
(
2007
).
45.
G.
Dilecce
,
P. F.
Ambrico
, and
S.
DeBenedictis
,
J. Phys. D: Appl. Phys.
43
,
195201
(
2010
).
46.
S.
Nijdam
,
G.
Wormeester
,
E. M.
van Veldhuizen
, and
U.
Ebert
,
J. Phys. D: Appl. Phys.
44
,
455201
(
2011
).
47.
T.
Hoder
,
H.
Hoeft
,
M.
Kettlitz
,
K. D.
Weltmann
, and
R.
Brandenburg
,
Phys. Plasmas
19
,
070701
(
2012
).
48.
S.
Nijdam
,
E.
Takahashi
,
A. H.
Markosyan
, and
U.
Ebert
,
Plasma Sources Sci. Technol.
23
,
025008
(
2014
).
49.
N. Y.
Babaeva
and
G. V.
Naidis
,
J. Phys. D: Appl. Phys.
29
,
2423
2431
(
1996
).
50.
R.
Morrow
and
J. J.
Lowke
,
J. Phys. D: Appl. Phys.
30
,
614
627
(
1997
).
51.
A.
Bourdon
,
V. P.
Pasko
,
N. Y.
Liu
,
S.
Celestin
,
P.
Segur
, and
E.
Marode
,
Plasma Sources Sci. Technol.
16
,
656
(
2007
).
52.
N.
Liu
,
S.
Celestin
,
A.
Bourdon
,
V. P.
Pasko
,
P.
Segur
, and
E.
Marode
,
Appl. Phys. Lett.
91
,
211501
(
2007
).
53.
N.
Liu
and
V.
Pasko
,
J. Geophys. Res.: Space Phys.
109
,
A04301
, doi: (
2004
).
54.
A.
Luque
and
U.
Ebert
,
J. Comput. Phys.
231
,
904
918
(
2012
).
55.
O.
Chanrion
and
T.
Neubert
,
J. Comput. Phys.
227
,
7222
7245
(
2008
).
56.
N.
Liu
and
V.
Pasko
,
J. Phys. D: Appl. Phys.
39
,
327
334
(
2006
).
57.
V.
Pasko
,
U. S.
Inan
,
T. F.
Bell
, and
Y. N.
Taranenko
,
J. Geophys. Res.
102
,
4529
, doi: (
1997
).
58.
U.
Ebert
,
F.
Brau
,
G.
Derks
,
W.
Hundsdorfer
,
C. Y.
Kao
,
C.
Li
,
A.
Luque
,
B.
Meulenbroek
,
S.
Nijdam
,
V.
Ratushnaya
,
V.
Schaefer
, and
S.
Tanveer
,
Nonlinearity
24
,
C1
C26
(
2011
).
59.
A.
Luque
,
V.
Ratushnaya
, and
U.
Ebert
,
J. Phys. D: Appl. Phys.
41
,
234005
(
2008
).
60.
A. A.
Kulikovsky
,
IEEE Trans. Plasma Sci.
26
,
1339
1348
(
1998
).
61.
S.
Pancheshnyi
,
M.
Nudnova
, and
A.
Starikovskii
,
Phys. Rev. E
71
,
016407
(
2005
).
62.
M.
Šimek
,
J. Phys. D: Appl. Phys.
35
,
1967
1980
(
2002
).
63.
M.
Šimek
,
G.
Dilecce
, and
S.
DeBenedictis
,
Plasma Chem. Plasma Process
15
(
3
),
427
449
(
1995
).
64.
M.
Šimek
,
V.
Babický
,
M.
Člupek
,
S.
DeBenedictis
,
G.
Dilecce
, and
P.
Šunka
,
J. Phys. D: Appl. Phys.
31
,
2591
(
1998
).
You do not currently have access to this content.