Thermophysical characterization of graphene is very important for both fundamental and technological research. While most of the existing thermal conductivity measurements are for graphene sheets with sizes larger than 1 μm, the thermal conductivities for suspended submicron graphene ribbons are still very few, although the thermal conductivity of graphene ribbons at the submicron scale is predicted to be much smaller than large graphene and strongly size dependent for both length and width due to the 2D nature of phonon transport. Here, we report the temperature dependent thermal conductivity of a 169-nm wide and 846-nm long graphene ribbon measured by the electrical self-heating method. The measured thermal conductivities range from (12.7 ± 2.95) W/m/K at 80 K to (932 ± 333) W/m/K at 380 K, being (349 ± 63) W/m/K at 300 K, following a ∼ T2.79 law for the full temperature range of 80 K to 380 K and a ∼ T1.23 law at low temperatures. The comparison of the measured thermal conductance with the ballistic transport limit indicates diffusive transport in this narrow and short ribbon due to phonon-edge as well as phonon-defect scattering. The data were also combined with an empirical model to predict possible width dependence of thermal conductivity for suspended graphene ribbons. These results help understand the 2D phonon transport in suspended submicron graphene ribbons and provide knowledge for controlling thermophysical properties of suspended graphene nanoribbons through size manipulation.

1.
E.
Pop
,
V.
Varshney
, and
A. K.
Roy
, “
Thermal properties of graphene: Fundamentals and applications
,”
MRS Bull.
37
,
1273
1281
(
2012
).
2.
A. A.
Balandin
,
S.
Ghosh
,
W.
Bao
 et al., “
Superior thermal conductivity of single-layer graphene
,”
Nano Lett.
8
(
3
),
902
907
(
2008
).
3.
S.
Ghosh
,
I.
Calizo
,
D.
Teweldebrhan
,
E. P.
Pokatilov
,
D. L.
Nika
,
A. A.
Balandin
,
W.
Bao
,
F.
Miao
, and
C. N.
Lau
, “
Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits
,”
Appl. Phys. Lett.
92
,
151911
(
2008
).
4.
C.
Faugeras
 et al., “
Thermal conductivity of graphene in corbino membrane geometry
,”
ACS Nano
4
,
1889
(
2010
).
5.
J. U.
Lee
,
D.
Yonn
,
H.
Kim
 et al., “
Thermal conductivity of suspended pristine graphene measured by Raman spectroscopy
,”
Phys. Rev. B
83
,
081419
(
2011
).
6.
S.
Chen
,
A. L.
Moore
,
R. S.
Ruoff
 et al., “
Raman measurements of thermal transport in suspended monolayer graphene of variable sizes in vacuum and gaseous environments
,”
ACS Nano
5
(
1
),
321
328
(
2011
).
7.
W.
Cai
 et al., “
Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition
,”
Nano Lett.
10
,
1645
1651
(
2010
).
8.
Q. Y.
Li
,
X.
Zhang
, and
Y. D.
Hu
, “
Laser flash Raman spectroscopy method for thermophysical characterization of 2D nanomaterials
,”
Thermochim. Acta
592
,
67
72
(
2014
).
9.
J. H.
Seol
,
I.
Jo
,
A. L.
Moore
 et al., “
Two-dimensional phonon transport in supported graphene
,”
Science
328
,
213
216
(
2010
).
10.
X.
Xu
 et al., “
Phonon transport in suspended single layer graphene
,” preprint at arXiv:org/abs/1012.2937 (abstract) and arXiv:org/pdf/1012.2937.pdf (full paper) (
2010
).
11.
X.
Xu
 et al., “
Length-dependent thermal conductivity in suspended single-layer graphene
,”
Nat. Commun.
5
,
3689
(
2014
).
12.
Z.
Wang
,
R.
Xie
, and
C. T.
Bui
, “
Thermal transport in suspended and supported few-layer graphene
,”
Nano Lett.
11
,
113
118
(
2011
).
13.
M. T.
Pettes
,
I.
Jo
,
Z.
Yao
 et al., “
Influence of polymeric residue on the thermal conductivity of suspended bilayer graphene
,”
Nano Lett.
11
,
1195
1200
(
2011
).
14.
H.
Xie
,
L.
Chen
,
W.
Yu
 et al., “
Temperature dependent thermal conductivity of a free-standing graphene nanoribbon
,”
Appl. Phys. Lett.
102
,
111911
(
2013
).
15.
M. H.
Bae
,
Z.
Li
,
Z.
Aksamija
 et al., “
Ballistic to diffusive crossover of heat flow in graphene ribbons
,”
Nat. Commun.
4
,
1734
(
2013
).
16.
E.
Munoz
,
J. X.
Lu
, and
B. I.
Yakobson
, “
Ballistic thermal conductance of graphene ribbons
,”
Nano Lett.
10
,
1652
(
2010
).
17.
X.
Zhang
 et al., “
Thermal and electrical conductivity of a suspended platinum nanofilm
,”
Appl. Phys. Lett.
86
,
171912
(
2005
).
18.
M.
Fujii
,
X.
Zhang
,
H. Q.
Xie
,
H.
Ago
,
K.
Takahashi
, and
T.
Ikuta
, “
Measuring the thermal conductivity of a single carbon nanotube
,”
Phys. Rev. Lett.
95
,
065502
(
2005
).
19.
C. M.
Orofeo
,
H.
Hibino
,
K.
Kawahara
,
Y.
Ogawa
,
M.
Tsuji
,
K.-i.
Ikeda
,
S.
Mizuno
, and
H.
Ago
, “
Influence of Cu metal on the domain structure and carrier mobility in single-layer graphene
,”
Carbon
50
(
6
),
2189
2196
(
2012
).
20.
H.
Ago
,
Y.
Ito
,
I.
Tanaka
,
S.
Mizuno
, and
M.
Tsuji
, “
Graphene sheet and method for producing the same
,” US Patent 8,697,230 B2 (
2014
).
21.
Z.
Chen
,
W.
Jang
,
W.
Bao
,
C. N.
Lau
, and
C.
Dames
, “
Thermal contact resistance between graphene and silicon dioxide
,”
Appl. Phys. Lett.
95
,
161910
(
2009
).
22.
Y. K.
Koh
,
M. H.
Bae
,
D. G.
Cahill
, and
E.
Pop
, “
Heat conduction across monolayer and few-layer graphenes
,”
Nano Lett.
10
,
4363
4368
(
2010
).
23.
N.
Mingo
and
D. A.
Broido
, “
Carbon nanotube ballistic thermal conductance and its limits
,”
Phys. Rev. Lett.
95
,
096105
(
2005
).
You do not currently have access to this content.