We report on fabrication of MoS2 thin-film transistors (TFTs) and experimental investigations of their high-temperature current-voltage characteristics. The measurements show that MoS2 devices remain functional to temperatures of at least as high as 500 K. The temperature increase results in decreased threshold voltage and mobility. The comparison of the direct current (DC) and pulse measurements shows that the direct current sub-linear and super-linear output characteristics of MoS2 thin-films devices result from the Joule heating and the interplay of the threshold voltage and mobility temperature dependences. At temperatures above 450 K, a kink in the drain current occurs at zero gate voltage irrespective of the threshold voltage value. This intriguing phenomenon, referred to as a “memory step,” was attributed to the slow relaxation processes in thin films similar to those in graphene and electron glasses. The fabricated MoS2 thin-film transistors demonstrated stable operation after two months of aging. The obtained results suggest new applications for MoS2 thin-film transistors in extreme-temperature electronics and sensors.

1.
J. A.
Weimer
, “
High temperature power electronics for future aircraft
,” in
IMAPS International Conference on High Temperature Electronics (HiTEC)
,
2006
;
M.
Huque
,
S.
Islam
,
B.
Blalock
,
C.
Su
,
R.
Vijayaraghavan
, and
L.
Tolbert
, “
Silicon-on-insulator based high temperature electronics for automotive applications
,” in
2008 IEEE International Symposium on Industrial Electronics in Cambridge, UK
,
2008
.
2.
A.
Tarakji
,
X.
Hu
,
A.
Koudymov
,
G.
Simin
,
J.
Yang
,
M.
Asif Khan
,
M. S.
Shur
, and
R.
Gaska
,
Solid State Electron.
46
,
1211
1214
(
2002
).
3.
M. S.
Shur
,
S. L.
Rumyantsev
, and
M. E.
Levinshtein
,
SiC Materials and Devices
(
World Scientific
,
Singapore
,
2007
).
4.
R.
Gaska
,
M.
Gaevski
,
J.
Den
,
R.
Jain
,
G.
Simin
, and
M.
Shur
, Novel AlInN/GaN integrated circuits operating up to 500°C,
44th European Solid State Device Research Conference (ESSDERC)
, pp.
142
1455
(
2014
).
5.
A. K.
Geim
and
I. V.
Grigorieva
,
Nature
499
,
419
425
(
2013
).
6.
M.
Chhowalla
,
H. S.
Shin
,
G.
Eda
,
L.-J.
Li
,
K. P.
Loh
, and
H.
Zhang
,
Nat. Chem.
5
,
263
275
(
2013
).
7.
D.
Teweldebrhan
,
V.
Goyal
, and
A. A.
Balandin
,
Nano Lett.
10
,
1209
1218
(
2010
).
8.
Z.
Yan
,
C.
Jiang
,
T. R.
Pope
,
C. F.
Tsang
,
J. L.
Stickney
,
P.
Goli
,
J.
Renteria
,
T. T.
Salguero
, and
A. A.
Balandin
,
J. Appl. Phys.
114
,
204301
(
2013
).
9.
J.
Heising
and
M. G.
Kanatzidis
,
J. Am. Chem. Soc.
121
,
11720
11732
(
1999
).
10.
J. L.
Verble
and
T. J.
Wieting
,
Phys. Rev. Lett.
25
,
362
365
(
1970
).
11.
S. W.
Han
,
H.
Kwon
,
S. K.
Kim
,
S.
Ryu
,
W. S.
Yun
,
D. H.
Kim
,
J. H.
Hwang
,
J.-S.
Kang
,
J.
Baik
,
H. J.
Shin
, and
S. C.
Hong
,
Phys. Rev. B
84
,
045409
(
2011
).
12.
J. M.
Salmani
,
Y.
Tan
, and
G.
Klimeck
, “
Single layer MoS2 band structure and transport
,” in
2011 International Semiconductor Device Research Symposium
(
2011
), pp.
1
2
.
13.
K. F.
Mak
,
C.
Lee
,
J.
Hone
,
J.
Shan
, and
T. F.
Heinz
,
Phys. Rev. Lett.
105
,
136805
(
2010
).
14.
R.
Ganatra
and
Q.
Zhang
,
ACS Nano
8
,
4074
4099
(
2014
).
15.
Y.
Wang
,
X.
Luo
,
N.
Zhang
,
M. R.
Laskar
,
L.
Ma
,
Y.
Wu
,
S.
Rajan
, and
W.
Lu
, “
Low frequency noise in chemical vapor deposited MoS2
,” in
82nd ARFTG Microwave Measurement Conference
(
2013
), pp.
1
3
.
16.
J.
Na
,
M.-K.
Joo
,
M.
Shin
,
J.
Huh
,
J.-S.
Kim
,
M.
Piao
,
J.-E.
Jin
,
H.-K.
Jang
,
H. J.
Choi
,
J. H.
Shim
, and
G.-T.
Kim
,
Nanoscale
6
,
433
441
(
2014
).
17.
J.
Renteria
,
R.
Samnakay
,
S. L.
Rumyantsev
,
C.
Jiang
,
P.
Goli
,
M. S.
Shur
, and
A. A.
Balandin
,
Appl. Phys. Lett.
104
,
153104
(
2014
).
18.
R.
Yan
,
J. R.
Simpson
,
S.
Bertolazzi
,
J.
Brivio
,
M.
Watson
,
X.
Wu
,
A.
Kis
,
T.
Luo
,
A. R. H.
Walker
, and
H. G.
Xing
,
ACS Nano
8
,
986
993
(
2014
).
19.
F. K.
Perkins
,
A. L.
Friedman
,
E.
Cobas
,
P. M.
Campbell
,
G. G.
Jernigan
, and
B. T.
Jonker
,
Nano Lett.
13
,
668
673
(
2013
).
20.
R.
Samnakay
,
C.
Jiang
,
S. L.
Rumyantsev
,
M. S.
Shur
, and
A. A.
Balandin
,
Appl. Phys. Lett.
106
,
023115
(
2015
).
21.
C.
Lee
,
H.
Yan
,
L. E.
Brus
,
T. F.
Heinz
,
J.
Hone
, and
S.
Ryu
,
ACS Nano
4
,
2695
2700
(
2010
).
22.
M.
Amani
,
M. L.
Chin
,
A. G.
Birdwell
,
T. P.
O'Regan
,
S.
Najmaei
,
Z.
Liu
,
P. M.
Ajayan
,
J.
Lou
, and
M.
Dubey
,
Appl. Phys. Lett.
102
,
193107
(
2013
).
23.
S. L.
Rumyantsev
,
G.
Liu
,
M.
Shur
, and
A. A.
Balandin
,
Appl. Phys. Lett.
98
,
222107
(
2011
).
24.
Z.
Ovadyahu
,
Phys. Rev. B
78
,
195120
(
2008
).
25.
J.
Delahaye
and
T.
Grenet
,
Physica B
404
,
470
472
(
2009
).
26.
A. L.
Burin
and
A. K.
Kurnosov
,
J. Low Temp. Phys.
167
,
318
(
2012
).
27.
28.
M. S.
Shur
,
Introduction to Electronic Devices
(
John Wiley
,
New York
,
1996
).
29.
S.
Ghatak
,
A.
Nath Pal
, and
A.
Ghosh
,
ACS Nano
5
,
7707
7712
(
2011
).
30.
K.
Kaasbjerg
,
K. S.
Thygesen
, and
K. W.
Jacobsen
,
Phys. Rev. B
85
,
115317
(
2012
).
31.
P. B.
Shah
,
M.
Amani
,
M. L.
Chin
,
T. P.
O'Regan
,
F. J.
Crowne
, and
M.
Dubey
,
Solid-State Electron.
91
,
87
90
(
2014
).
You do not currently have access to this content.