Damage accumulation and amorphization mechanisms by means of ion implantation in Ge are studied using Kinetic Monte Carlo and Binary Collision Approximation techniques. Such mechanisms are investigated through different stages of damage accumulation taking place in the implantation process: from point defect generation and cluster formation up to full amorphization of Ge layers. We propose a damage concentration amorphization threshold for Ge of ∼1.3 × 1022 cm−3 which is independent on the implantation conditions. Recombination energy barriers depending on amorphous pocket sizes are provided. This leads to an explanation of the reported distinct behavior of the damage generated by different ions. We have also observed that the dissolution of clusters plays an important role for relatively high temperatures and fluences. The model is able to explain and predict different damage generation regimes, amount of generated damage, and extension of amorphous layers in Ge for different ions and implantation conditions.

At the request of the authors, this article is being retracted effective 24 January 2017.

1.
R.
Pillarisetty
,
Nature
479
,
324
(
2011
).
2.
P. S.
Goley
and
M. K.
Hudait
,
Materials
7
,
2301
(
2014
).
3.
K. J.
Kuhn
,
IEEE Trans. Electron Devices
59
,
1813
(
2012
).
4.
A.
Satta
,
E.
Simoen
,
T.
Clarysse
,
T.
Janssens
,
A.
Benedetti
,
B.
De Jaeger
,
M.
Meuris
, and
W.
Vandervorst
,
Appl. Phys. Lett.
87
,
172109
(
2005
).
5.
M.
Posselt
,
L.
Bischoff
,
D.
Grambole
, and
F.
Herrmann
,
Appl. Phys. Lett.
89
,
151918
(
2006
).
6.
S.
Decoster
and
A.
Vantomme
,
J. Phys. D: Appl. Phys.
42
,
165404
(
2009
).
7.
S.
Koffel
,
P.
Scheiblin
,
A.
Claverie
, and
G.
Benassayag
,
J. Appl. Phys.
105
,
013528
(
2009
).
8.
G.
Impellizzeri
,
S.
Mirabella
,
E.
Bruno
,
A. M.
Piro
, and
M. G.
Grimaldi
,
J. Appl. Phys.
105
,
063533
(
2009
).
9.
A.
Claverie
,
S.
Koffel
,
N.
Cherkashin
,
G.
Benassayag
, and
P.
Scheiblin
,
Thin Solid Films
518
,
2307
(
2010
).
10.
G.
Impellizzeri
,
S.
Mirabella
, and
M. G.
Grimaldi
,
Appl. Phys. A
103
,
323
(
2011
).
11.
S.
Mirabella
,
D.
De Salvador
,
E.
Napolitani
,
E.
Bruno
, and
F.
Priolo
,
J. Appl. Phys.
113
,
031101
(
2013
).
12.
Y.-L.
Chao
,
S.
Prussin
,
J. C. S.
Woo
, and
R.
Scholz
,
Appl. Phys. Lett.
87
,
142102
(
2005
).
13.
A.
Claverie
,
C.
Vieu
,
J.
Fauré
, and
J.
Beauvillain
,
J. Appl. Phys.
64
,
4415
(
1988
).
14.
S.
Boninelli
,
G.
Impellizzeri
,
F.
Priolo
,
E.
Napolitani
, and
C.
Spinella
,
Nucl. Instrum. Methods Phys. Res. B
282
,
21
(
2012
).
15.
I.
Martin-Bragado
,
M.
Jaraiz
,
P.
Castrillo
,
R.
Pinacho
,
J. E.
Rubio
, and
J.
Barbolla
,
Appl. Phys. Lett.
84
,
4962
(
2004
).
16.
R.
Duffy
,
M.
Shayesteh
,
I.
Kazadojev
, and
R.
Yu
, in
13th International Workshop on Junction Technology (IWJT)
(
2013
), p.
16
.
17.
K. R. C.
Mok
,
F.
Benistant
,
M.
Jaraiz
,
J. E.
Rubio
,
P.
Castrillo
,
R.
Pinacho
, and
M. P.
Srinivasan
,
J. Appl. Phys.
103
,
014911
(
2008
).
18.
J. F.
Ziegler
,
J. P.
Biersack
, and
M. D.
Ziegler
,
SRIM, the Stopping and Range of Ions in Matter
(
SRIM Co.
,
2008
).
19.
R. E.
Stoller
,
M. B.
Toloczko
,
G. S.
Was
,
A. G.
Certain
,
S.
Dwaraknath
, and
F. A.
Garner
,
Nucl. Instrum. Methods Phys. Res. B
310
,
75
(
2013
).
20.
R.
Wittmann
and
S.
Selberherr
,
Solid-State Electron.
51
,
982
(
2007
).
21.
B. N.
Guo
,
N.
Variam
,
U.
Jeong
,
S.
Mehta
,
M.
Posselt
, and
A.
Lebedev
, in
Proceedings of the 14th International Conference on Ion Implantation Technology
(
IEEE
,
2002
), p.
131
.
22.
Sentaurus Process User Guide, I-2013.12, Synpsys Inc.
23.
EWJ.
Mitchell
,
Br. J. Appl. Phys.
8
,
179
(
1957
).
24.
P. N.
Keating
,
Phys. Rev.
145
,
637
645
(
1966
).
25.
A. M.
Mazzone
and
M.
Servidori
,
Philos. Mag. Lett.
57
,
85
(
1988
).
26.
I.
Martin-Bragado
,
A.
Rivera
,
G.
Valles
,
J. L.
Gomez-Selles
, and
M. J.
Caturla
,
Comput. Phys. Commun.
184
,
2703
(
2013
).
28.
L.
Pelaz
,
L. A.
Marques
, and
J.
Barbolla
,
J. Appl. Phys.
96
,
5947
(
2004
).
29.
A.
Claverie
,
C.
Vieu
,
J.
Faure
, and
J.
Beauvillain
,
Mater. Sci. Eng., B
2
,
99
(
1989
).
30.
C.
Vieu
,
A.
Claverie
,
J.
Faure
, and
J.
Beauvillain
, in
Phase Transformation Kinetics in Thin Films
(
1992
).
31.
A.
Chroneos
and
H.
Bracht
,
Appl. Phys. Rev.
1
,
011301
(
2014
).
32.
J.
Vanhellemont
,
P.
Śpiewak
, and
K.
Sueoka
,
J. Appl. Phys.
101
,
036103
(
2007
).
33.
P.
Śpiewak
,
J.
Vanhellemont
,
K.
Sueoka
,
K. J.
Kurzydowski
, and
I.
Romandic
,
J. Appl. Phys.
103
,
086103
(
2008
).
34.
K.
Sueoka
and
J.
Vanhellemont
,
Mater. Sci. Semicond. Process.
9
,
494
(
2006
).
35.
G. L.
Olson
and
J. A.
Roth
,
Mater. Sci. Rep.
3
,
1
(
1988
).
36.
I.
Martin-Bragado
and
V.
Moroz
,
Appl. Phys. Lett.
95
,
123123
(
2009
).
37.
G. Q.
Lu
,
E.
Nygren
,
M. J.
Aziz
,
D.
Turnbull
, and
C. W.
White
,
Appl. Phys. Lett.
56
,
137
(
1990
).
38.
B. L.
Darby
,
B. R.
Yates
,
I.
Martin-Bragado
,
J. L.
Gomez-Selles
,
R. G.
Elliman
, and
K. S.
Jones
,
J. Appl. Phys.
113
,
033505
(
2013
).
39.
F. F.
Morehead
and
B. L.
Crowder
,
Radiat. Effects
6
,
27
(
1970
).
40.
E.
Napolitani
,
E.
Bruno
,
G.
Bisognin
,
M.
Mastromatteo
,
D.
De Salvador
,
G. G.
Scapellato
,
S.
Boninelli
,
F.
Priolo
,
V.
Privitera
, and
A.
Carnera
,
Phys. Status Solidi A
211
,
118
(
2014
).
41.
S.
Boninelli
,
G.
Impellizzeri
,
A.
Alberti
,
F.
Priolo
,
F.
Cristiano
, and
C.
Spinella
,
Appl. Phys. Lett.
101
,
162103
(
2012
).
You do not currently have access to this content.