Nanoprobe tips are key components in many applications such as scanning probe microscopes, nanoscale imaging, nanofabrication and sensing. This paper describes a dynamic chemical etching method for the fabrication of optical nanoprobes. The tips are produced by mechanically rotating and dipping a silica optical fibre in a chemical etching solution (aqueous hydrofluoric acid) covered with a protection layer. Using different dynamic regimes of the mechanical movements during the chemical etching process, it is possible to vary the cone angle, the shape, and the roughness of the nanoprobes. It is found that the tip profiles are determined by the nonlinear dynamic evolution of the meniscus of the etchant near the fibre. Computational fluid dynamic simulations have been performed, showing that different flow regimes correspond to different shear forces acting on the forming nanotip, in agreement with experimental results. With this method, a high yield of reproducible nanotips can be obtained, thus overcoming the drawbacks of conventional etching techniques. Typical tip features are short taper length (∼200 μm), large cone angle (up to 40°), and small probe tip dimension (less than 30 nm).

1.
Y.
Zhang
,
A.
Dhawan
,
T.
Vo-Dinh
 et al.,
Nanoscale Res Lett.
6
,
18
(
2011
).
2.
B.
Hecht
 et al.,
J. Chem. Phys.
112
,
7761
7774
(
2000
).
3.
G. A.
Valaskovic
 et al.,
Appl. Opt.
34
,
1215
(
1995
).
4.
D. R.
Turner
, U.S. patent 4469-554 (
1983
).
5.
N.
Gu
 et al.,
J. Vac. Sci. Technol., B
22
,
2283
(
2004
).
6.
R.
Stockle
,
Appl. Phys. Lett.
75
,
160
(
1999
).
7.
A.
Lazarev
 et al.,
Rev. Sci. Instrum.
74
,
3679
(
2003
).
8.
P.
Hoffmann
 et al.,
Ultramicroscopy
61
,
165
(
1995
).
9.
N.
Essaidi
 et al.,
Appl. Opt.
37
,
609
(
1998
).
10.
T.
Okayama
 et al.,
Opt. Rev.
12
,
25
(
2005
).
11.
12.
Y.
Yuan
 et al.,
Appl. Opt.
51
,
5845
(
2012
).
13.
D. W.
Pohl
,
Adv. Opt. Electron Microsc.
12
,
243
(
1991
).
14.
E.
Betzig
 et al.,
Appl. Phys. Lett.
60
,
2484
(
1992
).
15.
L.
Novotny
 et al.,
Opt. Lett.
20
,
970
(
1995
).
16.
J. A.
Hoffmann
 et al.,
Rev. Sci. Instrum.
83
,
103703
(
2012
).
17.
S.
Monobe
and
M.
Ohtsu
,
J. Lightwave Technol
14
(
10
),
2231
2235
(
1996
).
18.
D.
Zeisel
 et al.,
Appl. Phys. Lett.
68
,
2941
(
1996
).
19.
B. A. F.
Puygranier
 et al.,
Ultramicroscopy
85
(
4
),
235
(
2000
).
21.
A.
Sayah
 et al.,
Ultramicroscopy
71
(
1–4
),
59
(
1998
).
22.
S.
Patanè
 et al.,
Ultramicroscopy
106
(
6
),
475
(
2006
).
23.
24.
P.
Lambelet
 et al.,
Appl. Opt.
37
,
7289
(
1998
).
25.
A.
Barucci
 et al., patent pending PCT/EP2014/071743 (10 October
2014
).
26.
B. I.
Yakobson
and
M. A.
Paesler
,
Ultramicroscopy
57
,
204
(
1995
).
27.
A. H.
La Rosa
,
B. I.
Yakobson
, and
H. D.
Hallen
,
APL
67
(
18
),
2597
2599
(
1995
).
28.
W.
Zhu
 et al.,
Opt. Express
21
,
28103
(
2013
).
29.
G. I.
Taylor
,
Philos. Trans. R. Soc. London, Ser. A
223
,
289
(
1923
).
30.
C. D.
Andereck
 et al.,
J. Fluid Mech.
164
,
155
(
1986
).
31.
M. P.
Aronson
 et al.,
J. Chem. Soc., Faraday Trans.
74
,
555
(
1978
).
32.
J. W.
Van Honschoten
 et al.,
Chem. Soc. Rev.
39
,
1096
(
2010
).
33.
P.
Prokopovich
 et al.,
Adv. Colloid Interface Sci.
168
(
1–2
),
210
(
2011
).
34.
ANSYS Inc., Fluent v14, Ansys Fluent Theory guide, November 2011.
You do not currently have access to this content.