Bardeen's model for the non-ideal metal-semiconductor interface was applied to metal-wrapped cylindrical nanowire systems of 30–400 nm in diameter; a significant effect of the nanowire diameter on the non-ideal Schottky barrier height was found. The calculations were performed by solving Poisson's equation in the nanowire, self-consistently with the constraints set by the non-ideal interface conditions; in these calculations, the barrier height is obtained from the solution, and it is not a boundary condition for Poisson's equation. The main finding is that thin nanowires are expected to have O(10100) meV higher Schottky barriers compared to their thicker counterparts; an effect 3–4 times stronger than the diameter dependence of image-force barrier lowering in similar systems. What lies behind this effect is the electrostatic properties of metal-wrapped nanowires; in particular, since depletion charge is reduced with nanowire radius, the potential drop on the interfacial layer is reduced—leading to the increase of the barrier height with nanowire radius reduction.

1.
W.
Lu
and
C. M.
Lieber
, “
Nanoelectronics from the bottom up
,”
Nat. Mater.
6
(
11
),
841
850
(
2007
).
2.
N. P.
Dasgupta
,
J.
Sun
,
C.
Liu
,
S.
Brittman
,
S. C.
Andrews
,
J.
Lim
,
H.
Gao
,
R.
Yan
, and
P.
Yang
, “
25th anniversary article: semiconductor nanowires–synthesis, characterization, and applications
,”
Adv. Mater.
26
(
14
),
2137
2184
(
2014
).
3.
Semiconductor Nanowires
RSC Smart Materials, edited by
W.
Lu
and
J.
Xiang
(
The Royal Society of Chemistry
,
2015
).
4.
F.
Léonard
,
A. A.
Talin
,
B. S.
Swartzentruber
, and
S. T.
Picraux
, “
Diameter-dependent electronic transport properties of au-catalyst/ge-nanowire schottky diodes
,”
Phys. Rev. Lett.
102
(
10
),
106805
(
2009
).
5.
F.
Léonard
and
A. A.
Talin
, “
Electrical contacts to one-and two-dimensional nanomaterials
,”
Nat. Nanotechnol.
6
(
12
),
773
783
(
2011
).
6.
S. M.
Sze
and
K. K.
Ng
,
Physics of Semiconductor Devices
(
Wiley-interscience
,
2006
).
7.
V. V.
Dobrokhotov
,
D. N.
McIlroy
,
M. G.
Norton
, and
C. A.
Berven
, “
Transport properties of hybrid nanoparticle-nanowire systems and their application to gas sensing
,”
Nanotechnology
17
(
16
),
4135
(
2006
).
8.
H.
Park
,
R.
Beresford
,
S.
Hong
, and
J.
Xu
, “
Geometry- and size-dependence of electrical properties of metal contacts on semiconducting nanowires
,”
J. Appl. Phys.
108
(
9
),
094308
(
2010
).
9.
Y.
Calahorra
and
D.
Ritter
, “
Surface depletion effects in semiconducting nanowires having a non-uniform radial doping profile
,”
J. Appl. Phys.
114
(
12
),
124310
(
2013
).
10.
V.
Schmidt
,
S.
Senz
, and
U.
Gösele
, “
Influence of the Si/Sio2 interface on the charge carrier density of si nanowires
,”
Appl. Phys. A
86
(
2
),
187
191
(
2007
).
11.
B. S.
Simpkins
,
M. A.
Mastro
,
C. R.
Eddy
, and
P. E.
Pehrsson
, “
Surface depletion effects in semiconducting nanowires
,”
J. Appl. Phys.
103
(
10
),
104313
104313
(
2008
).
12.
A. C. E.
Chia
and
R. R.
LaPierre
, “
Analytical model of surface depletion in GaAs nanowires
,”
J. Appl. Phys.
112
(
6
),
063705
(
2012
).
13.
F.
Léonard
and
A. A.
Talin
, “
Size-dependent effects on electrical contacts to nanotubes and nanowires
,”
Phys. Rev. Lett.
97
(
2
),
026804
(
2006
).
14.
Z.-R.
Wang
,
G.
Zhang
,
K.-L.
Pey
,
C.-H.
Tung
, and
G.-Q.
Lo
, “
Schottky-ohmic transition in metal-all-around electrical contacts to silicon nanowires
,”
J. Appl. Phys.
105
(
9
),
094508
(
2009
).
15.
S. Y.
Lee
and
S. K.
Lee
, “
Current transport mechanism in a metal–GaN nanowire Schottky diode
,”
Nanotechnology
18
(
49
),
495701
(
2007
).
16.
S. N.
Das
,
J. H.
Choi
,
J. P.
Kar
,
K. J.
Moon
,
T. I.
Lee
, and
J. M.
Myoung
, “
Junction properties of Au/ZnO single nanowire Schottky diode
,”
Appl. Phys. Lett.
96
(
9
),
092111
(
2010
).
17.
C. H.
Hsu
,
Q.
Wang
,
X.
Tao
, and
Y.
Gu
, “
Electrostatics and electrical transport in semiconductor nanowire Schottky diodes
,”
Appl. Phys. Lett.
101
(
18
),
183103
(
2012
).
18.
Y. J.
Hong
,
C.-H.
Lee
,
J. B.
Park
,
S. J.
An
, and
G.-C.
Yi
, “
Gan nanowire/thin film vertical structure p–n junction light-emitting diodes
,”
Appl. Phys. Lett.
103
(
26
),
261116
(
2013
).
19.
T.
Bryllert
,
L.-E.
Wernersson
,
L. E.
Fröberg
, and
L.
Samuelson
, “
Vertical high-mobility wrap-gated InAs nanowire transistor
,”
IEEE Electron Device Lett.
27
(
5
),
323
325
(
2006
).
20.
M. T.
Björk
,
H.
Schmid
,
C. D.
Bessire
,
K. E.
Moselund
,
H.
Ghoneim
,
S.
Karg
,
E.
Lörtscher
, and
H.
Riel
, “
Si–inas heterojunction esaki tunnel diodes with high current densities
,”
Appl. Phys. Lett.
97
(
16
),
163501
(
2010
).
21.

The boundary condition for the vanishing electric field at the onset of the depletion region is valid only for the depletion approximation; the more general condition, dϕdr|r=0=0, is applicable also to both fully and partially depleted NWs. We use this condition in the numerical solution of the problem.

22.
W.
Chen
,
V. G.
Dubrovskii
,
X.
Liu
,
T.
Xu
,
R.
Lardé
,
J. P.
Nys
,
B.
Grandidier
,
D.
Stiévenard
,
G.
Patriarche
, and
P.
Pareige
, “
Boron distribution in the core of Si nanowire grown by chemical vapor deposition
,”
J. Appl. Phys.
111
(
9
),
094909
(
2012
).
23.
E.
Koren
,
N.
Berkovitch
, and
Y.
Rosenwaks
, “
Measurement of active dopant distribution and diffusion in individual silicon nanowires
,”
Nano Lett.
10
(
4
),
1163
1167
(
2010
).
24.
D. E.
Perea
,
E. R.
Hemesath
,
E. J.
Schwalbach
,
J. L.
Lensch-Falk
,
P. W.
Voorhees
, and
L. J.
Lauhon
, “
Direct measurement of dopant distribution in an individual vapour-liquid-solid nanowire
,”
Nat. Nanotechnol.
4
(
5
),
315
319
(
2009
).
25.
J. E.
Allen
,
D. E.
Perea
,
E. R.
Hemesath
, and
L. J.
Lauhon
, “
Nonuniform nanowire doping profiles revealed by quantitative scanning photocurrent microscopy
,”
Adv. Mater.
21
(
30
),
3067
3072
(
2009
).
26.
E. C.
Garnett
,
Y.-C.
Tseng
,
D. R.
Khanal
,
J.
Wu
,
J.
Bokor
, and
P.
Yang
, “
Dopant profiling and surface analysis of silicon nanowires using capacitance–voltage measurements
,”
Nat. Nanotechnol.
4
(
5
),
311
314
(
2009
).
27.
I.
Amit
,
U.
Givan
,
J. G.
Connell
,
D. F.
Paul
,
J. S.
Hammond
,
L. J.
Lauhon
, and
Y.
Rosenwaks
, “
Spatially resolved correlation of active and total doping concentrations in vls grown nanowires
,”
Nano Lett.
13
(
6
),
2598
2604
(
2013
).
28.
J. G.
Connell
,
K.
Yoon
,
D. E.
Perea
,
E. J.
Schwalbach
,
P. W.
Voorhees
, and
L. J.
Lauhon
, “
Identification of an intrinsic source of doping inhomogeneity in vapor–liquid–solid-grown nanowires
,”
Nano Lett.
13
(
1
),
199
206
(
2013
).
29.

The subscript cyl denotes charge and capacitance per unit-length.

30.
D.
Bednarczyk
and
J.
Bednarczyk
, “
The approximation of the Fermi-Dirac integral F12(
η
)
,”
Phys. lett. A
64
(
4
),
409
410
(
1978
).
32.
V. V.
Mitin
,
V. A.
Kochelap
, and
M. A.
Stroscio
,
Introduction to Nanoelectronics: Science, Nanotechnology, Engineering, and Applications
(
Cambridge University Press
,
2008
).
33.
A.
Asenov
,
A. R.
Brown
,
J. H.
Davies
,
S.
Kaya
, and
G.
Slavcheva
, “
Simulation of intrinsic parameter fluctuations in decananometer and nanometer-scale mosfets
,”
IEEE Trans. Electron Devices
50
(
9
),
1837
1852
(
2003
).
34.

In fact, from an electrostatic stand-point, an interfacial layer of finite thickness is a necessity for the consideration of the voltage drop related to the interface states.

35.
Y.
Calahorra
,
D.
Mendels
, and
A.
Epstein
, “
Rigorous analysis of image force barrier lowering in bounded geometries: application to semiconducting nanowires
,”
Nanotechnology
25
(
14
),
145203
(
2014
).
36.
K.
Yoon
,
J. K.
Hyun
,
J. G.
Connell
,
I.
Amit
,
Y.
Rosenwaks
, and
L. J.
Lauhon
, “
Barrier height measurement of metal contacts to Si nanowires using internal photoemission of hot carriers
,”
Nano Lett.
13
(
12
),
6183
6188
(
2013
).
37.
M. M.
Koleśnik-Gray
,
T.
Lutz
,
G.
Collins
,
S.
Biswas
,
J. D.
Holmes
, and
V.
Krstić
, “
Contact resistivity and suppression of fermi level pinning in side-contacted germanium nanowires
,”
Appl. Phys. Lett.
103
(
15
),
153101
(
2013
).
You do not currently have access to this content.