The fabrication and electrical characterization of Schottky junction diodes have been extensively researched for three-quarters of a century since the original work of Schottky in 1938. This study breaks from the highly standardized regime of such research and provides an alternative methodology that prompts novel, more efficient applications of the adroit Schottky junction in areas such as chemical and thermal sensing. The core departure from standard Schottky diode configuration is that the metal electrode is of comparable or higher resistance than the underlying semiconductor. Further, complete electrical characterization is accomplished through recording four-probe resistance-temperature (RD-T) characteristics of the device, where electrical sourcing and sensing is done only via the metal electrode and not directly through the semiconductor. Importantly, this results in probing a nominally unbiased junction while eliminating the need for an Ohmic contact to the semiconductor. The characteristic RD-T plot shows two distinct regions of high (metal) and low (semiconductor) resistances at low and high temperatures, respectively, connected by a cross-over region of width, ΔT, within which there is a large negative temperature coefficient of resistance. The RD-T characteristic is highly sensitive to the Schottky barrier height; consequently, at a fixed temperature, RD responds appreciably to small changes in barrier height such as that induced by absorption of a chemical species (e.g., H2) at the interface. A theoretical model is developed to simulate the RD-T data and applied to Pd/p-Si and Pt/p-Si Schottky diodes with a range of metal electrode resistance. The analysis gives near-perfect fits to the experimental RD-T characteristics, yielding the junction properties as fit parameters. The modelling not only helps elucidate the underlying physics but also helps to comprehend the parameter space essential for the discussed applications. Although the primary regime of application is limited to a relatively narrow range (ΔT) for a given type of diode, the alternative methodology is of universal applicability to all metal-semiconductor combinations forming Schottky contacts.

1.
W.
Schottky
,
Naturwissenschaften
26
(
52
),
843
843
(
1938
).
2.
N. F.
Mott
,
Math. Proc. Cambridge Philos. Soc.
34
,
568
(
1938
).
3.
H. A.
Bethe
,
MIT Radiation Laboratory Report No. 43
,
1942
, p.
12
.
4.
A.
Maestrini
,
J.
Ward
,
G.
Chattopadhyay
,
E.
Schlecht
, and
I.
Mehdi
,
Frequenz
62
(
5–6
),
118
122
(
2008
).
5.
F.
Sizov
,
Opto-Electron. Rev.
18
(
1
),
10
36
(
2010
).
6.
H. T.
Chen
,
W. J.
Padilla
,
J. M. O.
Zide
,
A. C.
Gossard
,
A. J.
Taylor
, and
R. D.
Averitt
,
Nature
444
(
7119
),
597
600
(
2006
).
7.
L. E.
Calvet
,
R. G.
Wheeler
, and
M. A.
Reed
,
Appl. Phys. Lett.
80
(
10
),
1761
1763
(
2002
).
8.
J. M.
Larson
and
J. P.
Snyder
,
IEEE Trans. Electron Devices
53
(
5
),
1048
1058
(
2006
).
9.
R. J.
Moon
,
M. I.
Jeong
,
S. V.
Chandra
,
K. H.
Shim
,
M.
Jang
,
H. B.
Hong
,
S. Y.
Chang
, and
C. J.
Choi
,
J. Electrochem. Soc.
156
(
8
),
H621
H624
(
2009
).
10.
R.
Singh
,
J. A.
Cooper
,
M. R.
Melloch
,
T. P.
Chow
, and
J. W.
Palmour
,
IEEE Trans. Electron Devices
49
(
4
),
665
672
(
2002
).
11.
T.
Hashizume
,
J.
Kotani
, and
H.
Hasegawa
,
Appl. Phys. Lett.
84
(
24
),
4884
4886
(
2004
).
12.
M. W.
Allen
,
X. J.
Weng
,
J. M.
Redwing
,
K.
Sarpatwari
,
S. E.
Mohney
,
H.
von Wenckstern
,
M.
Grundmann
, and
S. M.
Durbin
,
IEEE Trans. Electron Devices
56
(
9
),
2160
2164
(
2009
).
13.
S.
Vempati
,
S.
Chirakkara
,
J.
Mitra
,
P.
Dawson
,
K. K.
Nanda
, and
S. B.
Krupanidhi
,
Appl. Phys. Lett.
100
(
16
),
162104
(
2012
).
14.
S. W.
Kim
,
K.
Ogata
,
K.
Maejima
,
S.
Fujita
, and
S.
Fujita
,
Compound Semiconductors 2001
(
CRC Press
,
2002
), pp.
671
675
.
15.
W. I.
Park
,
G.-C.
Yi
,
J.-W.
Kim
, and
S.-M.
Park
,
Appl. Phys. Lett.
82
(
24
),
4358
4360
(
2003
).
16.
T.
Strupeit
,
C.
Klinke
,
A.
Kornowski
, and
H.
Weller
,
ACS Nano
3
(
3
),
668
672
(
2009
).
17.
P.
Bondavalli
,
L.
Gorintin
,
G.
Feugnet
,
G.
Lehoucq
, and
D.
Pribat
,
Sens. Actuators, B
202
,
1290
1297
(
2014
).
18.
K.-H.
Kim
,
D.
Brunel
,
A.
Gohier
,
L.
Sacco
,
M.
Châtelet
, and
C.-S.
Cojocaru
,
Adv. Mater.
26
(
25
),
4363
4369
(
2014
).
19.
H.
Cetin
and
E.
Ayyildiz
,
Phys. B: Condens. Matter
394
(
1
),
93
99
(
2007
).
20.
V. I.
Shashkin
,
A. V.
Murel
,
V. M.
Daniltsev
, and
O. I.
Khrykin
,
Semiconductors
36
(
5
),
505
510
(
2002
).
21.
H. I.
Chen
and
Y. I.
Chou
,
Semicond. Sci. Technol.
18
(
2
),
104
110
(
2003
).
22.
D. R. T.
Zahn
,
S.
Park
, and
T. U.
Kampen
,
Vacuum
67
(
1
),
101
113
(
2002
).
23.
H.
Haick
,
M.
Ambrico
,
T.
Ligonzo
,
R. T.
Tung
, and
D.
Cahen
,
J. Am. Chem. Soc.
128
(
21
),
6854
6869
(
2006
).
24.
Z.
Zhang
,
Z. J.
Qiu
,
R.
Liu
,
M.
Ostling
, and
S. L.
Zhang
,
IEEE Electron Device Lett.
28
(
7
),
565
568
(
2007
).
25.
A.
Salehi
and
A.
Nikfarjam
,
Sens. Actuators, B
101
(
3
),
394
400
(
2004
).
26.
S. J.
Pearton
,
F.
Ren
,
Y. L.
Wang
,
B. H.
Chu
,
K. H.
Chen
,
C. Y.
Chang
,
W.
Lim
,
J. S.
Lin
, and
D. P.
Norton
,
Prog. Mater. Sci.
55
(
1
),
1
59
(
2010
).
27.
W. P.
Kang
and
Y.
Gurbuz
,
J. Appl. Phys.
75
(
12
),
8175
8181
(
1994
).
28.
J.
Schalwig
,
G.
Muller
,
U.
Karrer
,
M.
Eickhoff
,
O.
Ambacher
,
M.
Stutzmann
,
L.
Gorgens
, and
G.
Dollinger
,
Appl. Phys. Lett.
80
(
7
),
1222
1224
(
2002
).
29.
Y. I.
Chou
,
C. M.
Chen
,
W. C.
Liu
, and
H. I.
Chen
,
IEEE Electron Device Lett.
26
(
2
),
62
65
(
2005
).
30.
J. T.
Yan
and
C. T.
Lee
,
Sens. Actuators, B
143
(
1
),
192
197
(
2009
).
31.
L.
Feng
,
J.
Mitra
,
P.
Dawson
, and
G.
Hill
,
J. Phys.: Condens. Matter
23
(
42
),
422201
(
2011
).
32.
J. H.
Werner
and
H. H.
Guttler
,
J. Appl. Phys.
69
(
3
),
1522
1533
(
1991
).
33.
P. G.
McCafferty
,
A.
Sellai
,
P.
Dawson
, and
H.
Elabd
,
Solid-State Electron.
39
(
4
),
583
592
(
1996
).
34.
R. T.
Tung
,
Mater. Sci. Eng. R
35
(
1–3
),
1
138
(
2001
).
35.
S.
Chand
and
S.
Bala
,
Appl. Surf. Sci.
252
(
2
),
358
363
(
2005
).
36.
R. T.
Tung
,
Phys. Rev. B
45
(
23
),
13509
13523
(
1992
).
37.
R. T.
Tung
,
Appl. Phys. Rev.
1
(
1
),
011304
(
2014
).
38.
S.
Tongay
,
T.
Schumann
, and
A. F.
Hebard
,
Appl. Phys. Lett.
95
(
22
),
222103
(
2009
).
39.
Y.
An
,
A.
Behnam
,
E.
Pop
, and
A.
Ural
,
Appl. Phys. Lett.
102
(
1
),
013110
(
2013
).
40.
C.-C.
Chen
,
M.
Aykol
,
C.-C.
Chang
,
A. F. J.
Levi
, and
S. B.
Cronin
,
Nano Lett.
11
(
5
),
1863
1867
(
2011
).
41.
G.
Fan
,
H.
Zhu
,
K.
Wang
,
J.
Wei
,
X.
Li
,
Q.
Shu
,
N.
Guo
, and
D.
Wu
,
ACS Appl. Mater. Interfaces
3
(
3
),
721
725
(
2011
).
42.
X.
Li
,
H.
Zhu
,
K.
Wang
,
A.
Cao
,
J.
Wei
,
C.
Li
,
Y.
Jia
,
Z.
Li
,
X.
Li
, and
D.
Wu
,
Adv. Mater.
22
(
25
),
2743
2748
(
2010
).
43.
B.
Nie
,
J.-G.
Hu
,
L.-B.
Luo
,
C.
Xie
,
L.-H.
Zeng
,
P.
Lv
,
F.-Z.
Li
,
J.-S.
Jie
,
M.
Feng
,
C.-Y.
Wu
,
Y.-Q.
Yu
, and
S.-H.
Yu
,
Small
9
(
17
),
2872
2879
(
2013
).
44.
S.
Sonde
,
F.
Giannazzo
,
V.
Raineri
,
R.
Yakimova
,
J. R.
Huntzinger
,
A.
Tiberj
, and
J.
Camassel
,
Phys. Rev. B
80
(
24
),
241406
(
2009
).
45.
P.
Dawson
,
L.
Feng
,
L.
Penate-Quesada
,
J.
Mitra
, and
G.
Hill
,
J. Phys. D: Appl. Phys.
44
(
12
)
125101
(
2011
).
46.
J. E.
Murguia
,
J. M.
Mooney
, and
W. S.
Ewing
,
Opt. Eng.
29
(
7
),
786
794
(
1990
).
47.
P. R.
Norton
,
Opt. Eng.
30
(
11
),
1649
1663
(
1991
).
48.
K.
Oto
,
S.
Takaoka
,
K.
Murase
, and
S.
Ishida
,
J. Appl. Phys.
76
(
9
),
5339
5342
(
1994
).
49.
D.
Kojima
,
K.
Makihara
,
J.
Shi
, and
M.
Hashimoto
,
Appl. Surf. Sci.
169
,
320
324
(
2001
).
50.
See supplementary material at http://dx.doi.org/10.1063/1.4922974 for experimental I-V-T data and temperature dependent Schottky barrier heights obtained from their fits.
51.
S. M.
Sze
and
K. K.
Ng
,
Physics of Semiconductor Devices
, 3rd ed. (
John Wiley and Sons, Inc.
,
Hoboken, New Jersey
,
2007
).
52.
M. S.
Tyagi
,
Introduction to Semiconductor Materials and Devices
(
John Wiley and Sons
,
1991
).
53.
C.
Jacoboni
,
C.
Canali
,
G.
Ottaviani
, and
A. A.
Quaranta
,
Solid-State Electron.
20
(
2
),
77
89
(
1977
).
54.
A. A.
Kumar
,
V.
Janardhanam
,
V. R.
Reddy
, and
P. N.
Reddy
,
Superlatt. Microstruct.
45
(
1
),
22
32
(
2009
).
55.
M. B.
Reddy
,
A. A.
Kumar
,
V.
Janardhanam
,
V. R.
Reddy
, and
P. N.
Reddy
,
Curr. Appl. Phys.
9
(
5
),
972
977
(
2009
).
56.
AS is calculated as the product of the width of the metal and the thickness of the semiconductor.
57.
R. L.
Van Meirhaeghe
,
W. H.
Laflere
, and
F.
Cardon
,
J. Appl. Phys.
76
,
403
(
1994
).
58.
C.
Yuh-Hwa
,
C.
Kai-Kuen
,
G.
Shangjr
, and
J. A.
Yeh
,
Appl. Phys. Express
3
(
11
),
114101
(
2010
).
59.
D.
Wei
,
Y.
Liu
,
L.
Cao
,
H.
Zhang
,
L.
Huang
, and
G.
Yu
,
Chem. Mater.
22
(
2
),
288
293
(
2010
).
60.
C.-J.
Kim
,
H.-S.
Lee
,
Y.-J.
Cho
,
K.
Kang
, and
M.-H.
Jo
,
Nano Lett.
10
(
6
),
2043
2048
(
2010
).
61.
K.
ul Hasan
,
N. H.
Alvi
,
J.
Lu
,
O.
Nur
, and
M.
Willander
,
Nanoscale Res. Lett.
6
(
1
),
348
(
2011
).
62.
H.
Wang
,
Appl. Phys. Lett.
103
(
9
),
093101
(
2013
).
63.
G. D. J.
Smit
,
S.
Rogge
, and
T. M.
Klapwijk
,
Appl. Phys. Lett.
81
(
20
),
3852
3854
(
2002
).
64.
A.
Zhong
,
T.
Sasaki
, and
K.
Hane
,
Int. J. Hydrogen Energy
39
(
16
),
8564
8575
(
2014
).

Supplementary Material

You do not currently have access to this content.