We comparatively study donor-induced quantum dots in Si nanoscale-channel transistors for a wide range of doping concentration by analysis of single-electron tunneling transport and surface potential measured by Kelvin probe force microscopy (KPFM). By correlating KPFM observations of donor-induced potential landscapes with simulations based on Thomas-Fermi approximation, it is demonstrated that single-electron tunneling transport at lowest gate voltages (for smallest coverage of screening electrons) is governed most frequently by only one dominant quantum dot, regardless of doping concentration. Doping concentration, however, primarily affects the internal structure of the quantum dot. At low concentrations, individual donors form most of the quantum dots, i.e., “donor-atom” quantum dots. In contrast, at high concentrations above metal-insulator transition, closely placed donors instead of individual donors form more complex quantum dots, i.e., “donor-cluster” quantum dots. The potential depth of these “donor-cluster” quantum dots is significantly reduced by increasing gate voltage (increasing coverage of screening electrons), leading to the occurrence of multiple competing quantum dots.

1.
H.
Sellier
 et al,
Phys. Rev. Lett.
97
,
206805
(
2006
).
2.
Y.
Ono
 et al,
Appl. Phys. Lett.
90
,
102106
(
2007
).
3.
D.
Moraru
 et al,
Sci. Rep.
4
,
6219
(
2014
).
4.
B.
Weber
 et al,
Nat. Nanotechnol.
9
,
430
(
2014
).
5.
M.
Fuechsle
 et al,
Nat. Nanotechnol.
7
,
242
(
2012
).
7.
E.
Prati
 et al,
Nat. Nanotechnol.
7
,
443
(
2012
).
8.
G. P.
Lansbergen
 et al,
Nat. Phys.
4
,
656
(
2008
).
9.
M.
Tabe
 et al,
Phys. Rev. Lett.
105
,
016803
(
2010
).
10.
M.
Pierre
 et al,
Nat. Nanotechnol.
5
,
133
(
2010
).
11.
E.
Hamid
 et al,
Phys. Rev. B
87
,
085420
(
2013
).
12.
K. Y.
Tan
 et al,
Nano Lett.
10
,
11
(
2010
).
13.
A.
Tilke
 et al,
Appl. Phys. Lett.
75
,
3704
(
1999
).
14.
G. J.
Evans
,
H.
Mizuta
, and
H.
Ahmed
,
Jpn. J. Appl. Phys., Part 1
40
,
5837
(
2001
).
15.
M.
Nonnenmacher
 et al,
Appl. Phys. Lett.
58
,
2921
(
1991
).
16.
M.
Ligowski
 et al,
Appl. Phys. Lett.
93
,
142101
(
2008
).
17.
M.
Anwar
 et al,
Jpn. J. Appl. Phys., Part 2
50
,
08LB10
(
2011
).
18.
M.
Anwar
 et al,
Appl. Phys. Lett.
99
,
213101
(
2011
).
19.
R.
Nowak
 et al,
Appl. Phys. Lett.
102
,
083109
(
2013
).
20.
J. A.
Nixon
and
J. H.
Davies
,
Phys. Rev. B
41
,
7929
(
1990
).
21.
W.
Kohn
and
J. M.
Luttinger
,
Phys. Rev.
98
,
915
(
1955
).
22.
G. A.
Thomas
 et al,
Phys. Rev. B
23
,
5472
(
1981
).
23.
P. P.
Altermatt
 et al,
J. Appl. Phys.
100
,
113714
(
2006
).
You do not currently have access to this content.