Suppressing recombination on silicon contact interfaces is a topic being addressed for various applications such as photo sensors and solar cells. Although salicidation of the contacts enables low contact resistance, it is usually avoided for these applications as it increases the recombination rate on the contact interfaces. This study explores the use of salicided polysilicon buffer layer in photodiodes' contacts, acting to reduce the recombination rate at the silicide contact. The contact incorporates the advantage of low contact resistance due to silicidation with polysilicon interface that reduces recombination by creating carrier selective junction. The introduction of a polysilicon interlayer was found to increase the short circuit current and the fill factor and to decrease the dark leakage current. The improvement in the light collection parameters was found to be more pronounced under high light intensity (1000 W/m2) than under low light intensity (400 W/m2). The benevolent effect of the polysilicon interlayer is expected to be noticed in devices that are sensitive to contacts' performance. This includes not only image sensors but also high efficiency silicon solar cells.

1.
A. J. P.
Theuwissen
, “
CMOS image sensors: State-of-the-art
,”
Solid-State Electron.
52
(
9
),
1401
1406
(
2008
).
2.
A.
Jäger-Waldau
, “
PV status report 2013
,”
Scientific Report EUR 26118 EN
,
2013
.
3.
D.
Neuhaus
and
A.
Münzer
, “
Industrial silicon wafer solar cells
,”
Adv. OptoElectron.
2007
,
24521
.
4.
S.
Glunz
, “
High-efficiency crystalline silicon solar cells
,”
Adv. OptoElectron.
2007
,
97370
.
5.
M. D.
Archer
,
Clean Electricity from Photovoltaics
(World Scientific, Singapore,
2001
).
6.
J.
Choi
,
J.
Jung
,
J. T.
Lee
 et al., “
Investigation on reduction technique of anomalous leakage current generation in CMOS image sensor adopting n-type substrate
,”
Sens. Actuators, A
167
(
1
),
14
18
(
2011
).
7.
J. L.
Benton
,
C. J.
Doherty
,
S. D.
Ferris
,
D. L.
Flamm
,
L. C.
Kimerling
, and
H. J.
Leamy
, “
Hydrogen passivation of point defects in silicon
,”
Appl. Phys. Lett.
36
(
8
),
670
671
(
1980
).
8.
D. K.
Schroder
and
D. L.
Meier
, “
Solar cell contact resistance—A review
,”
IEEE Trans. Electron Devices
31
(
5
),
637
647
(
1984
).
9.
A. V.
Shah
,
F.
Sculati-Meillaud
,
Z. J.
Berenyi
,
O. M.
Ghahfarokhi
, and
R.
Kumar
, “
Diagnostics of thin-film silicon solar cells and solar panels/ modules with variable intensity measurements (VIM)
,”
Sol. Energy Mater. Sol. Cells
95
(
1
),
398
403
(
2011
).
10.
J.
Huo
,
C.
Xin
, and
J.
Yang
, “
Method of making CMOS image sensor-hybrid silicide
,” Patent No. US7932127 B2 (26 April
2011
).
11.
K.
Huang
,
C.
Wu
,
C.
Huang
,
D.
Yaung
, and
A.
Tu
, “
Method for reducing contact resistance of CMOS image sensor
,” Patent No. US20100279459. Taiwan, assignee (5 March
2010
).
12.
H.
Schulte-Huxel
,
U.
Römer
,
S.
Blankemeyer
 et al., “
Two-level metallization and module integration of point-contacted solar cells
,”
Energy Procedia
55
(
0
),
361
368
(
2014
).
13.
J.
Bartsch
,
M.
Kamp
,
D.
Hartleb
 et al., “
21.8% efficient n-type solar cells with industrially feasible plated metallization
,”
Energy Procedia
55
(
0
),
400
409
(
2014
).
14.
T.
Kim
,
J.
Lim
,
H.
Shin
 et al., “
21%-efficient PERL solar cells with plated front contacts on industrial 156 mm p-type crystalline silicon wafers
,”
Energy Procedia
55
(
0
),
431
436
(
2014
).
15.
I. R. C.
Post
,
P.
Ashburn
, and
G. R.
Wolstenholme
, “
Polysilicon emitters for bipolar transistors: A review and re-evaluation of theory and experiment
,”
IEEE Trans. Electron Devices
39
(
7
),
1717
1731
(
1992
).
16.
J.
Graul
,
A.
Glasl
, and
H.
Murrmann
, “
High-performance transistors with arsenic-implanted polysil emitters
,”
IEEE J. Solid-State Circuits
11
(
4
),
491
495
(
1976
).
17.
F. A.
Lindholm
,
A.
Neugroschel
,
M.
Arienzo
, and
P. A.
Iles
, “
Heavily doped polysilicon-contact solar cells
,”
IEEE Electron Device Lett.
6
(
7
),
363
365
(
1985
).
18.
F.
Feldmann
,
M.
Bivour
,
C.
Reichel
,
M.
Hermle
, and
S. W.
Glunz
, “
Passivated rear contacts for high-efficiency n-type si solar cells providing high interface passivation quality and excellent transport characteristics
,”
Sol. Energy Mater. Sol. Cells
120A
(
0
),
270
274
(
2014
).
19.
U.
Römer
,
R.
Peibst
,
T.
Ohrdes
 et al., “
Recombination behavior and contact resistance of n+ and p+ poly-crystalline si/mono-crystalline si junctions
,”
Sol. Energy Mater. Sol. Cells
131
(
0
),
85
91
(
2014
).
20.
F.
Feldmann
,
M.
Simon
,
M.
Bivour
,
C.
Reichel
,
M.
Hermle
, and
S. W.
Glunz
, “
Carrier-selective contacts for si solar cells
,”
Appl. Phys. Lett.
104
(
18
),
181105
(
2014
).
21.
E. G.
Colgan
,
J. P.
Gambino
, and
Q. Z.
Hong
, “
Formation and stability of silicides on polycrystalline silicon
,”
Mater. Sci. Eng. R: Rep.
16
(
2
),
43
96
(
1996
).
22.
K.
Maex
, “
Recent advances in silicide technologies, properties of crystalline silicon
,”
EMIS Datarev Ser.
20
,
851
862
(
1999
).
23.
P.
Ashburn
and
B.
Soerowirdjo
, “
Comparison of experimental and theoretical results on polysilicon emitter bipolar transistors
,”
IEEE Trans. Electron Devices
31
(
7
),
853
860
(
1984
).
24.
T. H.
Ning
and
R. D.
Isaac
, “
Effect of emitter contact on current gain of silicon bipolar devices
,”
IEEE Trans. Electron Devices
27
(
11
),
2051
2055
(
1980
).
25.
H.-D.
Lee
, “
Characterization of shallow silicided junctions for sub-quarter micron ULSI technology. extraction of silicidation induced schottky contact area
,”
IEEE Trans. Electron Devices
47
(
4
),
762
767
(
2000
).
26.
J.
Amano
,
K.
Nauka
,
M.
Scott
,
J.
Turner
, and
R.
Tsai
, “
Junction leakage in titanium self
aligned silicide devices
,”
Appl. Phys. Lett.
49
(
12
),
737
739
(
1986
).
27.
Priyanka
,
M.
Lal
, and
S.
Singh
, “
A new method of determination of series and shunt resistances of silicon solar cells
,”
Sol. Energy Mater. Sol. Cells
91
(
2
),
137
142
(
2007
).
28.
D. K.
Schroder
,
Semiconductor Material and Device Characterization
(
John Wiley & Sons
,
2006
).
29.
A.
Schenk
, “
A model for the field and temperature dependence of Shockley-read-hall lifetimes in silicon
,”
Solid-State Electron.
35
(
11
),
1585
1596
(
1992
).
30.
D.
Pysch
,
A.
Mette
, and
S. W.
Glunz
, “
A review and comparison of different methods to determine the series resistance of solar cells
,”
Sol. Energy Mater. Sol. Cells
91
(
18
),
1698
1706
(
2007
).
31.
R. J.
Handy
, “
Theoretical analysis of the series resistance of a solar cell
,”
Solid-State Electron.
10
(
8
),
765
775
(
1967
).
32.
A.
Cuthbertson
and
P.
Ashburn
, “
An investigation of the tradeoff between enhanced gain and base doping in polysilicon emitter bipolar transistors
,”
IEEE Trans. Electron Devices
32
(
11
),
2399
2407
(
1985
).
33.
K.-S.
Ji
,
H.
Syn
,
J.
Choi
,
H.-M.
Lee
, and
D.
Kim
, “
The emitter having microcrystalline surface in silicon heterojunction interdigitated back contact solar cells
,”
Jpn. J. Appl. Phys., Part 1
51
(
10
),
10NA05
(
2012
).
34.
M.
Brossard
,
C.
Hong
,
M.
Hung
 et al., “
Novel non-radiative exciton harvesting scheme yields a 15% efficiency improvement in high-efficiency III-V solar cells
,”
Adv. Opt. Mater.
3
(
2
),
263
269
(
2015
).
35.
J. P.
Gambino
and
E. G.
Colgan
, “
Silicides and ohmic contacts
,”
Mater. Chem. Phys.
52
(
2
),
99
146
(
1998
).
36.
A.
Steegen
and
K.
Maex
, “
Silicide-induced stress in si: Origin and consequences for MOS technologies
,”
Mater. Sci. Eng.: R Rep.
38
(
1
),
1
53
(
2002
).
37.
C. M.
Osburn
, “
Formation of silicided, ultra-shallow junctions using low thermal budget processing
,”
J. Electron Mater.
19
(
1
),
67
88
(
1990
).
38.
J.
Lin
,
S.
Banerjee
,
J.
Lee
, and
C.
Teng
, “
Anomalous current-voltage behavior in titanium-silicided shallow source/drain junctions
,”
J. Appl. Phys.
68
(
3
),
1082
1087
(
1990
).
You do not currently have access to this content.