Here, we report the numerical study of time dependent storage of energy by melting a phase change material. The heating is provided along invading lines, which change from single-line invasion to tree-shaped invasion. The numerical simulations show that the history of the amount of melted material is S-shaped. We also found that the fastest melting (i.e., the steepest S curve) is discovered by allowing the tree architecture to morph freely, toward greater access over time. The stem length and branching angle of invading trees can be selected such that the complete melting process is shorter. The melting process can also be made faster by increasing the complexity of the tree structure.
References
1.
2.
A.
Bejan
and S.
Lorente
, “Constructal law of design and evolution: Physics, biology, technology and society
,” J. Appl. Phys.
113
, 151301
(2013
).3.
A.
Bejan
and S.
Lorente
, Design with Constructal Theory
(Wiley
, Hoboken, NJ
, 2008
).4.
W.
Wechsatol
, S.
Lorente
, and A.
Bejan
, “Optimal tree-shaped networks for fluid flow in a disc-shaped body
,” Int. J. Heat Mass Transfer
45
, 4911
–4924
(2002
).5.
L.
Combelles
, S.
Lorente
, R.
Anderson
, and A.
Bejan
, “Tree-shaped fluid flow and heat storage in a conducting solid
,” J. Appl. Phys.
111
, 014902
(2012
).6.
S.
Lorente
, W.
Wechsatol
, and A.
Bejan
, “Tree-shaped flow structures designed by minimizing path lengths
,” Int. J. Heat Mass Transfer
45
, 3299
–3312
(2002
).7.
A.
Bejan
and S.
Lorente
, “Constructal tree-shaped flow structures
,” Appl. Therm. Eng.
27
, 755
–761
(2007
).8.
M.
Almogbel
and A.
Bejan
, “Constructal optimization of nonuniformly distributed tree-shaped flow structures for conduction
,” Int. J. Heat Mass Transfer
44
, 4185
–4194
(2001
).9.
W.
Wechsatol
, S.
Lorente
, and A.
Bejan
, “Tree-shaped insulated designs for the uniform distribution of hot water over an area
,” Int. J. Heat Mass Transfer
44
, 3111
–3123
(2001
).10.
W.
Wechsatol
, S.
Lorente
, and A.
Bejan
, “Development of tree-shaped flows by adding new users to existing networks of hot water pipes
,” Int. J. Heat Mass Transfer
45
, 723
–733
(2002
).11.
S.
Lorente
and A.
Bejan
, “Svelteness, freedom to morph, and constructal multi-scale flow structures
,” Int. J. Therm. Sci.
44
, 1123
–1130
(2005
).12.
V. D.
Zimparov
, A. K.
da Silva
, and A.
Bejan
, “Constructal tree-shaped parallel flow heat exchangers
,” Int. J. Heat Mass Transfer
49
, 4558
–4566
(2006
).13.
C.
Zamfirescu
and A.
Bejan
, “Constructal tree-shaped two-phase flow for cooling a surface
,” Int. J. Heat Mass Transfer
46
, 2785
–2797
(2003
).14.
V.
Arion
, A.
Cojocari
, and A.
Bejan
, “Constructal tree shaped networks for the distribution of electrical power
,” Energy Convers. Manage.
44
, 867
–891
(2003
).15.
A.
Bejan
, L. A. O.
Rocha
, and S.
Lorente
, “Thermodynamic optimization of geometry: T- and Y-shaped constructs of fluid streams
,” Int. J. Therm. Sci.
39
, 949
–960
(2000
).16.
W.
Wechsatol
, A.
Bejan
, and S.
Lorente
, “Tree-shaped flow architectures: Strategies for increasing optimization speed and accuracy
,” Numer. Heat Transfer
48
, 731
–744
(2005
).17.
S.
Lorente
, W.
Wechsatol
, and A.
Bejan
, “Optimization of tree-shaped flow distribution structures over a disc-shaped area
,” Int. J. Energy Res.
27
, 715
–723
(2003
).18.
A. K.
da Silva
, S.
Lorente
, and A.
Bejan
, “Constructal multi-scale tree-shaped heat exchangers
,” J. Appl. Phys.
96
, 1709
–1718
(2004
).19.
C.
Zamfirescu
and A.
Bejan
, “Tree-shaped structures for cold storage
,” Int. J. Refrig.
28
, 231
–241
(2005
).20.
A.
Bejan
, “Constructal tree-shaped paths for conduction and convection
,” Int. J. Energy Res.
27
, 283
–299
(2003
).21.
D. H.
Kang
, S.
Lorente
, and A.
Bejan
, “Constructal dendritic configuration for the radiation heating of a solid stream
,” J. Appl. Phys.
107
, 114910
(2010
).22.
A.
Bejan
, S.
Lorente
, and D. H.
Kang
, “Constructal design of regenerators
,” Int. J. Energy Res.
37
, 1509
–1518
(2013
).23.
A.
Abhat
, “Low temperature latent heat thermal energy storage: Heat storage materials
,” Sol. Energy
30
, 313
–332
(1983
).24.
R.
Velraj
, R. V.
Seeniraj
, B.
Hafner
, C.
Faber
, and K.
Schwarzer
, “Heat transfer enhancement in a latent heat storage system
,” Sol. Energy
65
, 171
–180
(1999
).25.
E. B. S.
Mettawee
and G. M. R.
Assassa
, “Thermal conductivity enhancement in a latent heat storage system
,” Sol. Energy
81
, 839
–845
(2007
).26.
M.
Costa
, D.
Buddhi
, and A.
Oliva
, “Numerical simulation of a latent heat thermal energy storage system with enhanced heat conduction
,” Energy Convers. Manage.
39
, 319
–330
(1998
).27.
K. A. R.
Ismail
and J. R.
Henriquez
, “Numerical and experimental study of spherical capsules packed bed latent heat storage system
,” Appl. Therm. Eng.
22
, 1705
–1716
(2002
).28.
N.
Nallusamy
, S.
Sampath
, and R.
Velraj
, “Experimental investigation on a combined sensible and latent heat storage system integrated with constant/varying (solar) heat sources
,” Renewable Energy
32
, 1206
–1227
(2007
).29.
A.
Koca
, H. F.
Oztop
, T.
Koyun
, and Y.
Varol
, “Energy and exergy analysis of a latent heat storage system with phase change material for a solar collector
,” Renewable Energy
33
, 567
–574
(2008
).30.
N. K.
Bansal
and D.
Buddhi
, “An analytical study of a latent heat storage system in a cylinder
,” Energy Convers. Manage.
33
, 235
–242
(1992
).31.
A.
Bejan
, S.
Ziaei
, and S.
Lorente
, “The S curve of energy storage by melting
,” J. Appl. Phys.
116
, 114902
(2014
).32.
C.
Charach
and P. B.
Kahn
, “Transient phase-change heat transfer in finite bodies: Universal bounds for the solidification (melting) time
,” J. Appl. Phys.
59
, 3579
–3581
(1986
).33.
C.
Charach
and M.
Conti
, “Thermodynamics of latent heat storage in parallel or in series with a heat engine
,” J. Appl. Phys.
78
, 1430
–1437
(1995
).34.
M.
Almajali
, K.
Lafdi
, and S.
Shaikh
, “Interfacial and capillary pressure effects on the thermal performance of wax/foam composites
,” J. Appl. Phys.
102
, 033506
(2007
).35.
S.
Shaikh
, K.
Lafdi
, and K.
Hallinan
, “Carbon nanoadditives to enhance latent heat storage of phase change materials
,” J. Appl. Phys.
103
, 094302
(2008
).36.
W.
Ogoh
and D.
Groulx
, “Effects of the number and distribution of fins on the storage characteristics of a cylindrical latent heat energy storage system: A numerical study
,” Heat Mass Transfer
48
, 1825
–1835
(2012
).37.
P.
Lamberg
, R.
Lehtiniemi
, and A. M.
Henell
, “Numerical and experimental investigation of melting and freezing processes in phase change material storage
,” Int. J. Therm. Sci.
43
, 277
–287
(2004
).38.
See http://www.comsol.com/ for information about COMSOL Multiphysics.
© 2015 AIP Publishing LLC.
2015
AIP Publishing LLC
You do not currently have access to this content.