Ballistic transport characteristics of metal-oxide semiconductor field effect transistors (MOSFETs) based on anisotropic two-dimensional materials monolayer HfS2 and phosphorene are explored through quantum transport simulations. We focus on the effects of the channel crystal orientation and the channel length scaling on device performances. Especially, the role of degenerate conduction band (CB) valleys in monolayer HfS2 is comprehensively analyzed. Benchmarking monolayer HfS2 with phosphorene MOSFETs, we predict that the effect of channel orientation on device performances is much weaker in monolayer HfS2 than in phosphorene due to the degenerate CB valleys of monolayer HfS2. Our simulations also reveal that at 10 nm channel length scale, phosphorene MOSFETs outperform monolayer HfS2 MOSFETs in terms of the on-state current. However, it is observed that monolayer HfS2 MOSFETs may offer comparable, but a little bit degraded, device performances as compared with phosphorene MOSFETs at 5 nm channel length.

1.
B.
Radisavljevic
,
A.
Radenovic
,
J.
Brivio
,
V.
Giacometti
, and
A.
Kis
,
Nat. Nanotechnol.
6
,
147
150
(
2011
).
2.
S.
Larentis
,
B.
Fallahazad
, and
E.
Tutuc
,
Appl. Phys. Lett.
101
,
223104
(
2012
).
3.
N. R.
Pradhan
,
D.
Rhodes
,
S.
Feng
,
Y.
Xin
,
S.
Memaran
,
B.-H.
Moon
,
H.
Terrones
,
M.
Terrones
, and
L.
Balicas
,
ACS Nano
8
,
5911
(
2014
).
4.
W. S.
Hwang
,
M.
Remskar
,
R.
Yan
,
V.
Protasenko
,
K.
Tahy
,
S. D.
Chae
,
P.
Zhao
,
A.
Konar
,
H. G.
Xing
,
A.
Seabaugh
, and
D.
Jena
,
Appl. Phys. Lett.
101
,
013107
(
2012
).
5.
H.
Fang
,
S.
Chuang
,
T. C.
Chang
,
K.
Takei
,
T.
Takahashi
, and
A.
Javey
,
Nano Lett.
12
(7),
3788
3792
(
2012
).
6.
H.
Liu
,
A. T.
Neal
,
Z.
Zhu
,
Z.
Luo
,
X.
Xu
,
D.
Tománek
, and
P. D.
Ye
,
ACS Nano
8
,
4033
(
2014
).
7.
Y.
Cai
,
G.
Zhang
, and
Y.
Zhang
,
Sci. Rep.
4
,
6677
(
2014
).
8.
J.
Qiao
,
X.
Kong
,
Z.-X.
Hu
,
F.
Yang
, and
W.
Ji
,
Nat. Commun.
5
,
4475
(
2014
).
9.
K.
Lam
,
Z.
Dong
, and
J.
Guo
,
IEEE Electron Device Lett.
35
,
963
(
2014
).
10.
F.
Liu
,
Y.
Wang
,
X.
Liu
,
J.
Wang
, and
H.
Guo
,
IEEE Trans. Electron Devices
61
,
3871
(
2014
).
11.
C.
Gong
,
H.
Zhang
,
W.
Wang
,
L.
Colombo
,
R. M.
Wallace
, and
K.
Cho
,
Appl. Phys. Lett.
103
,
053513
(
2013
).
12.
W.
Zhang
,
Z.
Huang
,
W.
Zhang
, and
Y.
Li
,
Nano Res.
7
,
1731
(
2014
).
13.
T.
Ozaki
and
H.
Kino
,
Phys. Rev. B
72
,
045121
(
2005
).
14.
J. P.
Perdew
and
Y.
Wang
,
Phys. Rev. B
45
,
13244
(
1992
).
15.
“Subvolume D non-tetrahedrally bonded binary compounds II,”
Springer Materials
, Semiconductors' of Landolt-Börnstein – Group III Condensed Matter Vol. 41, edited by
O.
Madelung
,
U.
Rössler
, and
M.
Schulz
(
Springer
,
Berlin, Heidelberg
,
2000
), Vol. 41D, pp. 1–6.
16.
K.
Novoselov
,
D.
Jiang
,
F.
Schedin
,
T.
Booth
,
V.
Khotkevich
,
S.
Morozov
, and
A.
Geim
,
Proc. Natl. Acad. Sci. U.S.A.
102
,
10451
(
2005
).
17.
G.
Lucovsky
and
R. M.
White
,
Phys. Rev. B
7
,
3859
(
1973
).
18.
H.
Weng
,
T.
Ozaki
, and
K.
Terakura
,
Phys. Rev. B
79
,
235118
(
2009
).
19.
T.
Usuki
,
M.
Saito
,
M.
Takatsu
,
C. R.
Kiehl
, and
N.
Yokoyama
,
Phys. Rev. B
52
,
8244
(
1995
).
20.
J.
Chang
and
C.
Hobbs
,
Appl. Phys. Lett.
106
,
083509
(
2015
).
21.
See http://www.itrs.net/ for Process Integration, Devices, and Structures (PIDS), International Technology Roadmap for Semiconductors (ITRS).
You do not currently have access to this content.