“Smart” polyelectrolyte-grafted or “soft” nanochannels with pH-responsiveness have shown great promise for applications like manipulation of ion transport, ion sensing and selection, current rectification, and many more. In this paper, we develop a theory to study the electroosmotic transport in a polyelectrolyte-grafted (or soft) nanochannel with pH-dependent charge density. In one of our recent studies, we have identified that explicit consideration of hydrogen ion concentration is mandatory for appropriately describing the electrostatics of such systems and the resulting monomer concentration must obey a non-unique, cubic distribution. Here, we use this electrostatic calculation to study the corresponding electroosmotic transport. We establish that the effect of pH in the electroosmotic transport in polyelectrolyte-grafted nanochannels introduces two separate issues: first is the consideration of the hydrogen and hydroxyl ion concentrations in describing the electroosmotic body force, and second is the consideration of the appropriate drag force that bears the signature of this cubic monomeric distribution. Our results indicate that the strength of the electroosmotic velocity for the pH-dependent case is always smaller than that for the pH-independent case, with the extent of this difference being a function of the system parameters. Such nature of the electroosmotic transport will be extremely significant in suppressing the electroosmotic flow strength with implications in large number applications such as capillary electrophoresis induced separation, electric field mediated DNA elongation, electrophoretic DNA nanopore sequencing, and many more.

1.
G. W.
de Groot
,
M. G.
Santonicola
,
K.
Sugihara
,
T.
Zambelli
,
E.
Reimhult
,
J.
Vörös
, and
G. J.
Vancso
, “
Switching transport through nanopores with pH-responsive polymer brushes for controlled ion permeability
,”
ACS Appl. Mater. Interfaces
5
,
1400
(
2013
).
2.
B.
Yameen
,
M.
Ali
,
R.
Neumann
,
W.
Ensinger
,
W.
Knoll
, and
O.
Azzaroni
, “
Single conical nanopores displaying pH-tunable rectifying characteristics. Manipulating ionic transport with zwitterionic polymer brushes
,”
J. Am. Chem. Soc.
131
,
2070
(
2009
).
3.
M.
Ali
,
B.
Yameen
,
J.
Cervera
,
P.
Ramirez
,
R.
Neumann
,
W.
Ensinger
,
W.
Knoll
, and
O.
Azzaroni
, “
Layer-by-layer assembly of polyelectrolytes into ionic current rectifying solid-state nanopores: Insights from theory and experiment
,”
J. Am. Chem. Soc.
132
,
8338
(
2010
).
4.
M.
Ali
,
B.
Yameen
,
R.
Neumann
,
W.
Ensinger
,
W.
Knoll
, and
O.
Azzaroni
, “
Biosensing and supramolecular bioconjugation in single conical polymer nanochannels. Facile incorporation of biorecognition elements into nanoconfined geometries
,”
J. Am. Chem. Soc.
130
,
16351
(
2008
).
5.
S. P.
Adiga
and
D. W.
Brenner
, “
Stimuli-responsive polymer brushes for flow control through nanopores
,”
J. Funct. Biomater.
3
,
239
(
2012
).
6.
S.
Chanda
,
S.
Sinha
, and
S.
Das
, “
Streaming potential and electroviscous effects in soft nanochannels: Towards designing more efficient nanofluidic electrochemomechanical energy converters
,”
Soft Matter
10
,
7558
(
2014
).
7.
S.
Das
, “
Explicit interrelationship between Donnan and surface potentials and explicit quantification of capacitance of charged soft interfaces with pH-dependent charge density
,”
Colloid. Surf. A
462
,
69
(
2014
).
8.
R.
Zimmermann
,
S. S.
Dukhin
,
C.
Werner
, and
J. F. L.
Duval
, “
On the use of electrokinetics for unraveling charging and structure of soft planar polymer films
,”
Curr. Opin. Colloid Interface Sci.
18
,
83
(
2013
).
9.
S. T.
Milner
, “
Polymer brushes
,”
Science
251
,
905
(
1991
).
10.
S. T.
Milner
,
T. A.
Witten
, and
M. E.
Cates
, “
Theory of the grafted polymer brush
,”
Macromolecules
21
,
2610
(
1988
).
11.
M.
Tagliazucchi
,
O.
Azzaroni
, and
I.
Szleifer
, “
Responsive polymers end-tethered in solid-state nanochannels: When nanoconfinement really matters
,”
J. Am. Chem. Soc.
132
,
12404
(
2010
).
12.
S. A.
Egorov
,
A.
Milchev
,
L.
Klushin
, and
K.
Binder
, “
Structural properties of concave cylindrical brushes interacting with free chains
,”
Soft Matter
7
,
5669
(
2011
).
13.
E. B.
Zhulina
and
O. V.
Borisov
, “
Structure and interaction of weakly charged polyelectrolyte brushes: Self-consistent field theory
,”
J. Chem. Phys.
107
,
5952
(
1997
).
14.
F. A. M.
Leermakers
,
M.
Ballauff
, and
O. V.
Borisov
, “
On the mechanism of uptake of globular proteins by polyelectrolyte brushes: A two-gradient self-consistent field analysis
,”
Langmuir
23
,
3937
(
2007
).
15.
S. J.
Miklavic
and
S.
MarEelja
, “
Interaction of surfaces carrying grafted polyelectrolytes
,”
J. Phys. Chem.
92
,
6718
(
1988
).
16.
R.
Israels
,
F. A. M.
Leermakers
,
G. J.
Fleer
, and
E. B.
Zhulina
, “
Charged polymeric brushes: Structure and scaling relations
,”
Macromolecules
27
,
3249
(
1994
).
17.
N. P.
Shusharina
and
P.
Linse
, “
Polyelectrolyte brushes with specific charge distribution: Mean-field lattice theory
,”
Eur. Phys. J. E
4
,
399
(
2001
).
18.
O.
Pizio
and
S.
Sokołowski
, “
Restricted primitive model for electrolyte solutions in slit-like pores with grafted chains: Microscopic structure, thermodynamics of adsorption, and electric properties from a density functional approach
,”
J. Chem. Phys.
138
,
204715
(
2013
).
19.
S.
He
,
H.
Merlitz
,
L.
Chen
,
J.-U.
Sommer
, and
C.-X.
Wu
, “
Polyelectrolyte brushes: MD simulation and SCF theory
,”
Macromolecules
43
,
7845
(
2010
).
20.
D. J.
Sandberg
,
J.-M. Y.
Carrillo
, and
A. V.
Dobrynin
, “
Molecular dynamics simulations of polyelectrolyte brushes: From single chains to bundles of chains
,”
Langmuir
23
,
12716
(
2007
).
21.
D.
Russano
,
J.-M. Y.
Carrillo
, and
A. V.
Dobrynin
, “
Interaction between brush layers of bottle-brush polyelectrolytes: Molecular dynamics simulations
,”
Langmuir
27
,
11044
(
2011
).
22.
J.-M. Y.
Carrillo
and
A. V.
Dobrynin
, “
Morphologies of planar polyelectrolyte brushes in a poor solvent: Molecular dynamics simulations and scaling analysis
,”
Langmuir
25
,
13158
(
2009
).
23.
H.
Ouyang
,
Z.
Xia
, and
J.
Zhe
, “
Static and dynamic responses of polyelectrolyte brushes under external electric field
,”
Nanotechnology
20
,
195703
(
2009
).
24.
Q.
Cao
,
C.
Zuo
,
L.
Li
, and
G.
Yan
, “
Effects of chain stiffness and salt concentration on responses of polyelectrolyte brushes under external electric field
,”
Biomicrofluidics
5
,
044119
(
2011
).
25.
D. I.
Dimitrov
,
A.
Milchev
, and
K.
Binder
, “
Polymer brushes in solvents of variable quality: Molecular dynamics simulations using explicit solvent
,”
J. Chem. Phys.
127
,
084905
(
2007
).
26.
G.
Chen
and
S.
Das
, “
Electrostatics of soft charged interfaces with pH-dependent charge density: Effect of consideration of appropriate hydrogen ion concentration distribution
,”
RSC Adv.
5
,
4493
(
2015
).
27.
K.
McDaniel
,
F.
Valcius
,
J.
Andrews
, and
S.
Das
, “
Electrostatic potential distribution of a soft spherical particle with a charged core and pH-dependent charge density
,”
Colloids Surf., B
127
,
143
(
2015
).
28.
J. F. L.
Duval
,
D.
Küttner
,
M.
Nitschke
,
C.
Werner
, and
R.
Zimmermann
, “
Interrelations between charging, structure and electrokinetics of nanometric polyelectrolyte films
,”
J. Colloid Interface Sci.
362
,
439
(
2013
).
29.
H.
Ohshima
,
T. W.
Healy
, and
L. R.
White
, “
Approximate analytic expressions for the electrophoretic mobility of spherical colloidal particles and the conductivity of their dilute suspensions
,”
J. Chem. Soc. Faraday Trans. 2
79
,
1613
(
1983
).
30.
H.
Ohshima
, “
On the general expression for the electrophoretic mobility of a soft particle
,”
J. Colloid Interface Sci.
228
,
190
(
2000
).
31.
H.
Ohshima
, “
Electrokinetic phenomena of soft particles
,”
Curr. Opin. Colloid Interface Sci.
18
,
73
(
2013
).
32.
J. F. L.
Duval
and
H.
Ohshima
, “
Electrophoresis of diffuse soft particles
,”
Langmuir
22
,
3533
(
2006
).
33.
F.
Tessier
and
G. W.
Slater
, “
Modulation of electroosmotic flow strength with end grafted polymer chains
,”
Macromolecules
39
,
1250
(
2006
).
34.
Z.
Zhang
,
C.
Zuo
,
Q.
Cao
,
Y.
Ma
, and
S.
Chen
, “
Modulation of electroosmotic flow using polyelectrolyte brushes: A molecular dynamics study
,”
Macromol. Theory Simul.
21
,
145
(
2012
).
35.
Q.
Gao
and
E. S.
Yeung
, “
A matrix for DNA separation: Genotyping and sequencing using Poly(vinylpyrrolidone) solution in uncoated capillaries
,”
Anal. Chem.
70
,
1382
(
1998
).
36.
S.
Qi
,
X.
Liu
,
S.
Ford
,
J.
Barrows
,
G.
Thomas
,
K.
Kelly
,
A.
McCandless
,
K.
Lian
,
J.
Goettert
, and
S. A.
Soper
, “
Microfluidic devices fabricated in poly(methyl methacrylate) using hot-embossing with integrated sampling capillary and fiber optics for fluorescence detection
,”
Lab Chip
2
,
88
(
2002
).
37.
L.
Bendahl
,
S. H.
Hansen
, and
B.
Gammelgaard
, “
Capillaries modified by noncovalent anionic polymer adsorption for capillary zone electrophoresis, micellar electrokinetic capillary chromatography and capillary electrophoresis mass spectrometry
,”
Electrophoresis
22
,
2565
(
2001
).
38.
B.
Pranaityte
and
A.
Padarauskas
, “
Characterization of the SDS-induced electroosmotic flow in micellar electrokinetic chromatography with cationic polyelectrolyte-coated capillaries
,”
Electrophoresis
27
,
1915
(
2006
).
39.
Y.
Zuo
,
G.
Wang
,
Y.
Yu
,
C.
Zuo
,
Z.
Liu
,
D.
Hu
, and
Y.
Wang
, “
Suppression of electroosmotic flow by polyampholyte brush
,”
Microfluid. Nanofluid.
17
,
923
(
2014
).
40.
D.
Kaniansky
,
M.
Masar
, and
J.
Bielcıkova
, “
Electroosmotic flow suppressing additives for capillary zone electrophoresis in a hydrodynamically closed separation system
,”
J. Chromotogr. A
792
,
483
(
1997
).
41.
T.
Kaneta
,
T.
Ueda
,
K.
Hata
, and
T.
Imasaka
, “
Suppression of electroosmotic flow and its application to determination of electrophoretic mobilities in a poly(vinylpyrrolidone)-coated capillary
,”
J. Chromotogr. A
1106
,
52
(
2006
).
42.
F. I.
Uba
,
S. R.
Pullagurla
,
N.
Sirasunthorn
,
J.
Wu
,
S.
Park
,
R.
Chantiwas
,
Y.-K.
Cho
,
H.
Shin
, and
S. A.
Soper
, “
Surface charge, electroosmotic flow and DNA extension in chemically modified thermoplastic nanoslits and nanochannels
,”
Analyst
140
,
113
(
2015
).
43.
S.
Das
,
P.
Dubsky
,
A.
van den Berg
, and
J. C. T.
Eijkel
, “
Concentration polarization in translocation of DNA through nanopores and nanochannels
,”
Phys. Rev. Lett.
108
,
138101
(
2012
).
44.
H.
Ohshima
, “
Theory of electrostatics and electrokinetics of soft particles
,”
Sci. Technol. Adv. Mater.
10
,
063001
(
2009
).
45.
F.
Baldessari
and
J. G.
Santiago
, “
Electrokinetics in nanochannels. Part I. Electric double layer overlap and channel-to-well equilibrium
,”
J. Colloid Interface Sci.
325
,
526
(
2008
).
46.
S.
Das
,
A.
Guha
, and
S. K.
Mitra
, “
Exploring new scaling regimes for streaming potential and electroviscous effects in a nanocapillary with overlapping electric double layers
,”
Anal. Chim. Acta
804
,
159
(
2013
).
47.
S.
Das
,
S.
Chanda
,
J. C. T.
Eijkel
,
N. R.
Tas
,
S.
Chakraborty
, and
S. K.
Mitra
, “
Filling of charged cylindrical capillaries
,”
Phys. Rev. E
90
,
043011
(
2014
).
48.
S.
Chanda
and
S.
Das
, “
Effect of finite ion sizes in an electrostatic potential distribution for a charged soft surface in contact with an electrolyte solution
,”
Phys. Rev. E
89
,
012307
(
2014
).
49.
S. P.
Adiga
and
D. W.
Brenner
, “
Toward designing smart nanovalves: Modeling of flow control through nanopores via the helix-coil transition of grafted polypeptide chains
,”
Macromolecules
40
,
1342
(
2007
).
50.
K. F.
Freed
and
S. F.
Edwards
, “
Polymer viscosity in concentrated solutions
,”
J. Chem. Phys.
61
,
3626
(
1974
).
51.
P. G.
de Gennes
, “
Dynamics of entangled polymer solutions. II. Inclusion of hydrodynamic interactions
,”
Macromolecules
9
,
594
(
1976
).
52.
J.
Klein
, “
Shear of polymer brushes
,”
Colloids Surf., A
86
,
63
(
1994
).
53.
G.
Chen
and
S.
Das
, “
Streaming potential and electroviscous effects in soft nanochannels beyond Debye-Hückel linearization
,”
J. Colloid Interface Sci.
445
,
357
(
2015
).
54.
H.
Ohshima
, “
Electrical phenomena in a suspension of soft particles
,”
Soft Matter
8
,
3511
(
2012
).
55.
E.
Tsori
,
D.
Andelman
, and
J.-F.
Joanny
, “
Interfacial instability of charged–end-group polymer brushes
,”
Eur. Phys. Lett.
82
,
46001
(
2008
).
56.
K.
Makino
and
H.
Ohshima
, “
Soft particle analysis of electrokinetics of biological cells and their model systems
,”
Sci. Technol. Adv. Mater.
12
,
023001
(
2011
).
57.
H.
Ohshima
, “
Electrostatic interaction between soft particles
,”
J. Colloid Interface Sci.
328
,
3
(
2008
).
58.
A. C.
Barbati
and
B. J.
Kirby
, “
Soft diffuse interfaces in electrokinetics—Theory and experiment for transport in charged diffuse layers
,”
Soft Matter
8
,
10598
(
2012
).
59.
Y. B.
Zhulina
,
V. A.
Pryamitsyn
, and
O. V.
Borisov
, “
Structure and conformational transitions in grafted polymer chain layers. A new theory
,”
Polym. Sci. U.S.S.R.
31
,
205
(
1989
).
60.
S. T.
Milner
, “
Hydrodynamic penetration into parabolic brushes
,”
Macromolecules
24
,
3704
(
1991
).
61.
S. T.
Milner
, “
Strongly stretched polymer brushes
,”
J. Polymer Sci.: Part B: Polymer Phys.
32
,
2743
(
1994
).
62.
S. T.
Milner
,
T. A.
Witten
, and
M. E.
Cates
, “
A parabolic density profile for grafted polymers
,”
Europhys. Lett.
5
,
413
(
1988
).
63.
M. S.
Kilic
,
M. Z.
Bazant
, and
A.
Ajdari
, “
Steric effects in the dynamics of electrolytes at large applied voltages. I. Double-layer charging
,”
Phys. Rev. E
75
,
021502
(
2007
).
64.
I.
Vlassiouk
,
S.
Smirnov
, and
Z.
Siwy
, “
Ionic selectivity of single nanochannels
,”
Nano Lett.
8
,
1978
(
2008
).
You do not currently have access to this content.