The temperature dependence of the drain current is an important parameter in thin-film transistors. In this paper, we propose that in source-gated transistors (SGTs), this temperature dependence can be controlled and tuned by varying the length of the source electrode. SGTs comprise a reverse biased potential barrier at the source which controls the current. As a result, a large activation energy for the drain current may be present which, although useful in specific temperature sensing applications, is in general deleterious in many circuit functions. With support from numerical simulations with Silvaco Atlas, we describe how increasing the length of the source electrode can be used to reduce the activation energy of SGT drain current, while maintaining the defining characteristics of SGTs: low saturation voltage, high output impedance in saturation, and tolerance to geometry variations. In this study, we apply the dual current injection modes to obtain drain currents with high and low activation energies and propose mechanisms for their exploitation in future large-area integrated circuit designs.

1.
S. D.
Brotherton
,
Introduction to Thin Film Transistors: Physics and Technology of TFTs
(
Springer
,
2013
).
2.
J. M.
Shannon
and
E. G.
Gerstner
,
IEEE Electron Device Lett.
24
(
6
),
405
407
(
2003
).
3.
A.
Valletta
,
L.
Mariucci
,
M.
Rapisarda
, and
G.
Fortunato
,
J. Appl. Phys.
114
(
6
),
064501
(
2013
).
4.
J. M.
Shannon
and
E. G.
Gerstner
,
Solid-State Electron.
48
(
7
),
1155
1161
(
2004
).
5.
J. M.
Shannon
,
R. A.
Sporea
,
S.
Georgakopoulos
,
M.
Shkunov
, and
S. R. P.
Silva
,
IEEE Trans. Electron Devices
60
(
8
),
2444
2449
(
2013
).
6.
T.
Lindner
,
G.
Paasch
, and
S.
Scheinert
,
IEEE Trans. Electron Devices
52
(
1
),
47
55
(
2005
).
7.
R. A.
Sporea
,
M. J.
Trainor
,
N. D.
Young
,
J. M.
Shannon
, and
S. R. P.
Silva
,
IEEE Trans. Electron Devices
57
(
10
),
2434
2439
(
2010
).
8.
R. A.
Sporea
,
M. J.
Trainor
,
N. D.
Young
,
X.
Guo
,
J. M.
Shannon
, and
S. R. P.
Silva
,
Solid-State Electron
65–66
(
0
),
246
249
(
2011
).
9.
A.
Valletta
,
A.
Daami
,
M.
Benwadih
,
R.
Coppard
,
G.
Fortunato
,
M.
Rapisarda
,
F.
Torricelli
, and
L.
Mariucci
,
Appl. Phys. Lett.
99
(
23
),
233309
(
2011
).
10.
A. M.
Ma
,
M.
Gupta
,
F. R.
Chowdhury
,
M.
Shen
,
K.
Bothe
,
K.
Shankar
,
Y.
Tsui
, and
D. W.
Barlage
,
Solid-State Electron.
76
(
0
),
104
108
(
2012
).
11.
R. A.
Sporea
,
M. J.
Trainor
,
N. D.
Young
,
J. M.
Shannon
, and
S. R. P.
Silva
,
IEEE Trans. Electron Devices
59
(
8
),
2180
2186
(
2012
).
12.
R. A.
Sporea
,
G.
Xiaojun
,
J. M.
Shannon
, and
S. R. P.
Silva
,
presented at the International Semiconductor Conference
,
2009
.
13.
J. M.
Shannon
,
Appl. Phys. Lett.
85
(
2
),
326
328
(
2004
).
14.
G.
Xiaojun
,
F.
Balon
,
R. A.
Hatton
, and
J. M.
Shannon
,
presented at the Flexible Electronics and Displays Conference and Exhibition
,
2008
.
15.
R. A.
Sporea
,
M. J.
Trainor
,
N. D.
Young
,
J. M.
Shannon
, and
S. R. P.
Silva
,
Sci. Rep.
4
,
4295
(
2014
).
16.
X.
Xiaoli
,
F.
Linrun
,
H.
Shasha
,
J.
Yizheng
, and
G.
Xiaojun
,
IEEE Electron Device Lett.
33
(
10
),
1420
1422
(
2012
).
17.
R. A.
Sporea
,
X.
Guo
,
J. M.
Shannon
, and
S. R. P.
Silva
, in
Thin Film Transistors 10
, edited by
Y.
Kuo
(
Electrochemical Society (ECS)
,
2010
), Vol.
33
, pp.
419
424
.
18.
R. A.
Sporea
,
S.
Georgakopoulos
,
X.
Xu
,
X.
Guo
,
M.
Shkunov
,
J. M.
Shannon
, and
S. R. P.
Silva
,
MRS Proc.
1553
,
mrss13-1553-t02-03
(
2013
).
19.
R. A.
Sporea
,
J. M.
Shannon
, and
S. R. P.
Silva
,
presented at the 69th Annual Device Research Conference (DRC)
,
2011
.
20.
S. M.
Sze
and
K. K.
Ng
,
Physics of Semiconductor Devices
, 3rd ed. (
Wiley and Sons
,
2006
).
21.
H.
Ibach
and
H.
Lüth
,
Solid-State Physics: An Introduction to Principles of Materials Science
, 4th ed. (
Springer
,
2009
).
22.
F.
Balon
,
J. M.
Shannon
, and
B. J.
Sealy
,
Appl. Phys. Lett.
86
(
7
),
073503
(
2005
).
23.
J. M.
Shannon
and
F.
Balon
,
IEEE Trans. Electron Devices
56
(
10
),
2354
2356
(
2009
).
24.
See supplementary material at http://dx.doi.org/10.1063/1.4921114 for further discussion of activation energy dependence on constructive parameters and for relative contributions of current injected by electrodes S1 and S2 to drain current.

Supplementary Material

You do not currently have access to this content.