The critical behavior of Pr1−xCaxMnO3 samples with x = 0.25, 0.27, and 0.29 has been investigated. Detailed analyses of magnetic-field dependences of magnetization at temperatures around the paramagnetic-ferromagnetic transition, M(H, T), reveal that the samples undergo a second-order magnetic phase transition. The Arrott plot method predicts the values of critical parameters to be TC  ≈ 118 K, β = 0.351 ± 0.003, γ = 1.372 ± 0.002, and δ = 4.90 ± 0.02 for x = 0.25; TC  ≈ 116 K, β = 0.362 ± 0.002, γ = 1.132 ± 0.004, and δ = 4.09 ± 0.03 for x = 0.27; and TC  ≈ 110 K, β = 0.521 ± 0.002, γ = 0.912 ± 0.005, and δ = 2.71 ± 0.02 for x = 0.29. The values of β = 0.351 (for x = 0.25) and β = 0.362 (for x = 0.27) are close to the value β = 0.365 expected for the 3D Heisenberg model, proving an existence of short-range ferromagnetic interactions in these samples. A slight increase in Ca-doping content (x = 0.29) leads to the shift of the β value (=0.521) towards that of the mean-field theory (with β = 0.5) characteristic of long-range ferromagnetic interactions. The samples also exhibit a magnetocaloric effect: around TC of Pr1−xCaxMnO3 compounds, magnetic-entropy change reaches the maximum values of about 5.0, 4.1, and 2.5 J kg−1 K−1 for x = 0.25, 0.27, and 0.29, respectively, under an applied-field change of 50 kOe. Magnetic-field dependences of the maximum magnetic-entropy change (ΔSmax) obey a power law |ΔSmax(H)| ∝ Hn, where exponent values n = 0.68–0.74 are close to those obtained from the theoretical relation n = 1 + (β − 1)/(β + γ).

1.
R.
von Helmolt
 et al,
Phys. Rev. Lett.
71
,
2331
(
1993
).
2.
L. M.
Fisher
 et al,
Phys. Rev. B
68
,
174403
(
2003
).
3.
T.
Elovaara
 et al,
J. Phys.: Condens. Matter
24
,
216002
(
2012
).
4.
J.
Wanjun
 et al,
Phys. Rev. B
78
,
144409
(
2008
).
5.
E.
Pollert
 et al,
J. Phys. Chem. Solids
43
(
12
),
1137
(
1982
).
6.
J.
Wu
and
C.
Leighton
,
Phys. Rev. B
67
,
174408
(
2003
).
7.
B. K.
Banerjee
,
Phys. Lett.
12
,
16
(
1964
).
8.
G. E.
Fedorov
 et al,
Phys. Status Solidi B
236
(
2
),
437
(
2003
).
9.
A.
Arrott
and
J. E.
Noakes
,
Phys. Rev. Lett.
19
,
786
(
1967
).
10.
Z. G.
Zheng
 et al,
J. Appl. Phys.
111
,
07A922
(
2012
).
11.
U. K.
Rößler
 et al,
Phys. Rev. B
70
,
104417
(
2004
).
12.
T. L.
Phan
 et al,
Solid State Commun.
184
,
40
(
2014
).
13.
S. N.
Kaul
,
J. Magn. Magn. Mater.
53
(
1–2
),
5
(
1985
).
14.
K.
Huang
,
Statistical Mechanics
, 2nd ed. (
Wiley
,
New York
,
1987
).
15.
B.
Padmanabhan
 et al,
Phys. Rev. B
75
(
2
),
024419
(
2007
).
16.
V.
Franco
 et al,
J. Appl. Phys.
100
,
083903
(
2006
).
17.
N. S.
Bingham
 et al,
J. Appl. Phys.
106
(
2
),
023909
(
2009
).
18.
M. H.
Phan
and
S. C.
Yu
,
J. Magn. Magn. Mater.
308
(
2
),
325
(
2007
).
19.
M.
Borowski
,
Perovskites: structure, properties and uses
(
Nova Science
,
2010
).
You do not currently have access to this content.