We studied the magnetic properties of multiferroic spinel Co0.5Fe0.5Cr2O4, especially focusing on the spin-ordering, spin-reorientation, and charge re-distribution effects. From the Rietveld refinement analysis, the crystal structure was identified to be a normal cubic spinel of Fd-3m. Based on the temperature-dependent measurements of the magnetization and magnetic hyperfine field (Hhf), Curie temperature (TC) of Co0.5Fe0.5Cr2O4 was determined to be around 86 K where Hhf  ≅  0. From the change of slope in the M-T curve, the conical-spiral magnetic ordering temperature was determined to be 20 K, which coincides with Hhf measurement. Also, we have observed the decrease in the slope of the electric quadrupole splitting (ΔEQ) curve above 20 K, suggesting that the change in ΔEQ around TS is originated from charge redistribution due to the spin-relocation associated with the distortion of each tetrahedral site around Fe2+ ion above TS. This indicates that Co0.5Fe0.5Cr2O4 has the noncollinear conical-spiral spin ordering with incommensurate spin structure below TS, while above TS, it has ferrimagnetic spin ordering with commensuration in the collinear state. In addition, the Jahn-teller distortion temperature is measured to be around 155 K, since both ΔEQ and Δ1 of 5T2g band decrease rapidly with increasing temperature and disappear around 155 K.

1.
V.
Tsurkan
 et al.,
Phys. Rev. B
73
,
224442
(
2006
).
2.
A.
Krimmel
 et al.,
Phys. Rev. B
73
,
014413
(
2006
).
3.
N.
Büttgen
 et al.,
Phys. Rev. B
73
,
132409
(
2006
).
4.
S.
Nakatsuji
 et al.,
Science
309
,
1697
(
2005
).
5.
Y.
Yamashita
 et al.,
Phys. Rev. Lett.
85
,
4960
(
2000
).
6.
S. T.
Bramwell
 et al.,
Science
294
,
1495
(
2001
).
7.
T.
Fennell
 et al.,
Science
326
,
415
(
2009
).
8.
B. R.
Myoung
 et al.,
J. Appl. Phys.
109
,
07E133
(
2011
).
9.
H.
Katsura
 et al.,
Phys. Rev. Lett.
95
,
057205
(
2005
).
10.
Y.
Yamasaki
 et al.,
Phys. Rev. Lett.
96
,
207204
(
2006
).
11.
T.
Kimura
 et al.,
Phys. Rev. Lett.
94
,
137201
(
2005
).
12.
W.
Huang
 et al.,
Appl. Phys. Lett.
89
,
262506
(
2006
).
13.
C. C.
Berry
 et al.,
J. Phys. D
36
,
R198
(
2003
).
14.
T.
Suzuki
 et al.,
Phys. Rev. Lett.
98
,
127203
(
2007
).
15.
J. S.
Saini
 et al.,
Hyperfine Interact.
67
,
453
(
1991
).
16.
G.
Lautenschläger
 et al.,
Phys. Rev. B
48
,
6087
(
1993
).
17.
K.
Taniguchi
 et al.,
Phys. Rev. Lett.
97
,
097203
(
2006
).
18.
A. H.
Arkenbout
 et al.,
Phys. Rev. B
74
,
184431
(
2006
).
19.
K.
Singh
 et al.,
Appl. Phys. Lett.
99
,
172903
(
2011
).
20.
G.
Shirane
 et al.,
J. Appl. Phys.
35
,
954
(
1964
).
21.
S.
Bordács
 et al.,
Phys. Rev. Lett.
103
,
077205
(
2009
).
22.
Y. J.
Choi
 et al.,
Phys. Rev. Lett.
102
,
067601
(
2009
).
23.
P.
Dalmas de Réotier
 et al.,
Phys. Rev. B
85
,
140407(R)
(
2012
).
24.
B. R.
Myoung
 et al.,
IEEE Trans. Magn.
48
,
1301
(
2012
).
25.
D. H.
Choi
 et al.,
J. Appl. Phys.
103
,
07E316
(
2008
).
You do not currently have access to this content.