In this paper, we analyze two types of hysteresis in spin crossover molecular magnets compounds in the framework of the First Order Reversal Curve (FORC) method. The switching between the two stable states in these compounds is accompanied by hysteresis phenomena if the intermolecular interactions are higher than a threshold. We have measured the static thermal hysteresis (TH) and the kinetic light induced thermal hysteresis (LITH) major loops and FORCs for the polycrystalline Fe(II) spin crossover compound [Fe1−xZnx(bbtr)3](ClO4)2 (bbtr = 1,4-di(1,2,3-triazol-1-yl)butane), either in a pure state (x = 0) or doped with Zn ions (x = 0.33) considering different sweeping rates. Here, we use this method not only to infer the domains distribution but also to disentangle between kinetic and static components of the LITH and to estimate the changes in the intermolecular interactions introduced by dopants. We also determined the qualitative relationship between FORC distributions measured for TH and LITH.

1.
Spin-Crossover Materials - Properties and Applications
, edited by
M. A.
Halcrow
(
John Wiley and Sons
,
Chichester, United Kingdom
,
2013
).
2.
S.
Ohkoshi
 et al,
Nat. Chem.
3
,
564
(
2011
).
3.
J.
Linares
 et al,
Sensors
12
,
4479
(
2012
).
4.
H. J.
Shepherd
 et al,
Nat. Commun.
4
,
2607
(
2013
).
5.
A.
Hauser
,
Top. Curr. Chem.
234
,
155
(
2004
).
6.
P.
Gütlich
 et al,
J. Phys.: Condens. Matter
16
,
S1087
(
2004
).
7.
F.
Varret
 et al,
Top. Curr. Chem.
234
,
199
(
2004
).
8.
R.
Bronisz
,
Inorg. Chem.
44
,
4463
(
2005
).
9.
F.
Beron
 et al,
J. Appl. Phys.
103
,
07D908
(
2008
).
10.
C. R.
Pike
 et al,
Geophys. J. Int.
145
,
721
(
2001
).
11.
C.
Enachescu
 et al,
Physica B
343
,
15
(
2004
).
12.
R.
Tanasa
 et al,
Phys. Rev. B
71
,
014431
(
2005
).
13.
A.
Rotaru
 et al,
Phys. Rev. B
83
,
224107
(
2011
).
14.
R.
Tanasa
 et al,
Appl. Phys. Lett.
104
,
031909
(
2014
).
15.
A.
Rotaru
 et al,
Eur. Phys. J. B
84
,
439
(
2011
).
16.
C.
Enachescu
 et al,
Phys. Rev. B
72
,
054413
(
2005
).
17.
I.
Krivokapic
 et al,
Angew. Chem. Int. Ed.
49
,
8509
(
2010
).
18.
P.
Chakraborty
 et al,
Eur. J. Inorg. Chem.
2013
(
5–6
),
770
.
19.
J.
Kusz
 et al,
Chem. Eur. J.
17
,
6807
(
2011
).
20.
C.
Chong
 et al,
Chem. Phys. Lett.
504
,
29
(
2011
).
21.
C.
Enachescu
 et al,
Phys. Rev. Lett.
102
,
257204
(
2009
).
22.
N.
Paradis
 et al,
Eur. J. Inorg. Chem.
2012
,
3618
.
23.
N.
Paradis
 et al,
Eur. J. Inorg. Chem.
2013
(
5–6
),
968
.
24.
F.
Varret
 et al,
Eur. J. Inorg. Chem.
2013
(
5–6
),
763
.
25.
P.
Gütlich
 et al,
Top. Curr. Chem.
233
,
1
(
2004
).
You do not currently have access to this content.