Thermal relaxation phenomena in mixed-type hysteretic systems are investigated by using recently developed mixed Preisach model and Monte Carlo technique. The anomalous hysteretic behavior observed in several heterogeneous materials, especially in nanoscale embedding, is also generating unconventional relaxation processes which may involve several steps before relaxing to the anhysteretic state. The medium-term relaxation behavior is studied under various noisy environments and applied magnetic fields, analyzing the influence of noise strength, noise bandwidth, and field values on the relaxation characteristics.

1.
M.
Ziese
,
I.
Vrejoiu
, and
D.
Hesse
,
Appl. Phys. Lett.
97
,
052504
(
2010
).
2.
S.
Jammalamadaka
,
J.
Vanacken
, and
V.
Moshchalkov
,
Europhys. Lett.
98
,
17002
(
2012
).
3.
J.
Park
,
D. R.
Lee
,
Y.
Choi
,
J. W.
Freeland
,
K. B.
Lee
,
S. K.
Sihna
,
K. R.
Nikolaev
, and
A. M.
Goldman
,
Appl. Phys. Lett.
95
,
102504
(
2009
).
4.
S. M.
Valvidares
,
J. I.
Martın
,
L. M.
Prado
,
D.
Pain
,
O.
Acher
,
G.
Suran
, and
J. M.
Alameda
,
J. Magn. Magn. Mater.
242–245
,
169
(
2002
).
5.
E. E.
Shalyguina
,
I.
Korvánek
,
P.
Svec
,
V. V.
Molokanov
, and
V. A.
Melnikov
,
Tech. Phys. Lett.
30
,
591
(
2004
).
6.
H.-Y.
Wang
,
K.
Xun
, and
L.
Xiao
,
Phys. Rev. B
70
,
214431
(
2004
).
7.
J. Y.
Yang
,
J. H.
Kim
,
J. S.
Lee
,
S. J.
Woo
,
J. S.
Kwak
,
J. P.
Hong
, and
M. H.
Jung
,
Phys. Rev. B
78
,
094415
(
2008
).
8.
S.
Esho
,
Jpn. J. Appl. Phys., Part 1
15
,
93
100
(
1976
).
9.
X. H.
Wei
,
R.
Skomski
,
Z.
Sun
, and
D.
Sellmyer
,
J. Appl. Phys.
103
,
07D514
(
2008
).
10.
A.
Enders
,
R.
Skomski
,
D.
Sellmyer
, and
A.
Enders
, “
Designed magnetic nanostructures
,”
Nanoscale Magnetic Materials and Applications
(
Springer
,
2009
).
11.
I. D.
Mayergoyz
,
Nonlinear Diffusion of Electromagnetic Fields
(
Elsevier
,
2003
).
12.
I.
Mayergoyz
and
P.
Andrei
,
J. Appl. Phys.
91
(
10
),
7645
(
2002
).
13.
P.
Andrei
,
M.
Mehta
, and
M.
Dimian
,
Physica B
435
,
156
159
(
2014
).
14.
M.
Dimian
,
P.
Andrei
, and
M.
Grayson
,
J. Appl. Phys.
115
,
17D103
(
2014
).
15.
I. D.
Mayergoyz
,
Mathematical Models of Hysteresis and Their Applications
(
Elsevier
,
2003
).
16.
I. D.
Mayergoyz
and
C. E.
Korman
,
J. Appl. Phys.
69
,
2128
2130
(
1991
).
17.
I. D.
Mayergoyz
and
C. E.
Korman
,
J. Appl. Phys.
75
,
5478
5480
(
1994
).
18.
M. I.
Freidlin
and
S. J.
Sheu
,
Probab. Theory Relat. Fields
116
,
181
(
2000
).
19.
M. I.
Freidlin
,
I. D.
Mayergoyz
, and
R.
Pfeiffer
,
Phys. Rev. E
62
,
1850
1855
(
2000
).
20.
M.
Dimian
and
I. D.
Mayergoyz
,
Phys. Rev. E
70
,
046124
(
2004
).
21.
M.
Dimian
and
P.
Andrei
,
Noise Driven Phenomena in Hysteretic Systems
(
Springer
,
2014
).
22.
P.
Andrei
and
A.
Adedoyin
,
J. Appl. Phys.
103
,
07D913
(
2008
).
You do not currently have access to this content.