We report on the fabrication of an ultra-high aspect ratio ionically conductive single microchannel with tunable diameter from ≈ 20 μm to fully closed. The 4 mm-long channel is fabricated in a Polydimethylsiloxane (PDMS) mold and its cross-sectional area is controlled by applying macroscopic compressive strain to the mold in a direction perpendicular to the channel length. We investigated the ionic conduction properties of the channel. For a wide range of compressive strain up to ≈ 0.27, the strain dependence of the resistance is monotonic and fully reversible. For strain > 0.27, ionic conduction suddenly shuts off and the system becomes hysteretic (whereby a finite strain reduction is required to reopen the channel). Upon unloading, the original behavior is retrieved. This reversible behavior is observed over 200 compression cycles. The cross-sectional area of the channel can be inferred from the ion current measurement, as confirmed by a Nano-Computed Tomography investigation. We show that the cross-sectional area decreases monotonically with the applied compressive strain in the reversible range, in qualitative agreement with linear elasticity theory. We find that the shut-off strain is affected by the spatial extent of the applied strain, which provides additional tunability. Our tunable channel is well-suited for multiple applications in micro/nano-fluidic devices.

1.
H. A.
Stone
,
A. D.
Stroock
, and
A.
Ajdari
,
Annu. Rev. Fluid Mech.
36
,
381
(
2004
).
2.
M.
Margulies
,
M.
Egholm
,
W. E.
Altman
,
S.
Attiya
,
J. S.
Bader
,
L. A.
Bemben
,
J.
Berka
,
M. S.
Braverman
,
Y.-J.
Chen
,
Z.
Chen
,
S. B.
Dewell
,
L.
Du
,
J. M.
Fierro
,
X. V.
Gomes
,
B. C.
Godwin
,
W.
He
,
S.
Helgesen
,
C. H.
Ho
,
G. P.
Irzyk
,
S. C.
Jando
,
M. L. I.
Alenquer
,
T. P.
Jarvie
,
K. B.
Jirage
,
J.-B.
Kim
,
J. R.
Knight
,
J. R.
Lanza
,
J. H.
Leamon
,
S. M.
Lefkowitz
,
M.
Lei
,
J.
Li
,
K. L.
Lohman
,
H.
Lu
,
V. B.
Makhijani
,
K. E.
McDade
,
M. P.
McKenna
,
E. W.
Myers
,
E.
Nickerson
,
J. R.
Nobile
,
R.
Plant
,
B. P.
Puc
,
M. T.
Ronan
,
G. T.
Roth
,
G. J.
Sarkis
,
J. F.
Simons
,
J. W.
Simpson
,
M.
Srinivasan
,
K. R.
Tartaro
,
A.
Tomasz
,
K. A.
Vogt
,
G. A.
Volkmer
,
S. H.
Wang
,
Y.
Wang
,
M. P.
Weiner
,
P.
Yu
,
R. F.
Begley
, and
J. M.
Rothberg
,
Nature
437
,
376
(
2005
).
3.
P. S.
Dittrich
and
A.
Manz
,
Nat. Rev. Drug Discov.
5
,
210
(
2006
).
4.
H.
Daiguji
,
P.
Yang
, and
A.
Majumdar
,
Nano Lett.
4
,
137
(
2004
).
5.
Q.
Pu
,
J.
Yun
,
H.
Temkin
, and
S.
Liu
,
Nano Lett.
4
,
1099
(
2004
).
6.
W.
Reisner
,
K. J.
Morton
,
R.
Riehn
,
Y. M.
Wang
,
Z.
Yu
,
M.
Rosen
,
J. C.
Sturm
,
S. Y.
Chou
,
E.
Frey
, and
R. H.
Austin
,
Phys. Rev. Lett.
94
,
196101
(
2005
).
7.
P.
Abgrall
and
N. T.
Nguyen
,
Anal. Chem.
80
,
2326
(
2008
).
8.
W.
Sparreboom
,
A.
van den Berg
, and
J. C. T.
Eijkel
,
Nat. Nano
4
,
713
(
2009
).
9.
J.
Eijkel
and
A.
Berg
,
Microfluid. Nanofluid.
1
,
249
(
2005
).
10.
Z. S.
Siwy
and
S.
Howorka
,
Chem. Soc. Rev.
39
,
1115
(
2010
).
11.
I.
Vlassiouk
and
Z. S.
Siwy
,
Nano Lett.
7
,
552
(
2007
).
12.
H.
Daiguji
,
Y.
Oka
, and
K.
Shirono
,
Nano Lett.
5
,
2274
(
2005
).
13.
I.
Vlassiouk
,
T. R.
Kozel
, and
Z. S.
Siwy
,
J. Am. Chem. Soc.
131
,
8211
(
2009
).
14.
E. B.
Kalman
,
I.
Vlassiouk
, and
Z. S.
Siwy
,
Adv. Mater.
20
,
293
(
2008
).
15.
S. J.
Sowerby
,
M. F.
Broom
, and
G. B.
Petersen
,
Sens. Actuators B
123
,
325
(
2007
).
16.
G. S.
Roberts
,
D.
Kozak
,
W.
Anderson
,
M. F.
Broom
,
R.
Vogel
, and
M.
Trau
,
Small
6
,
2653
(
2010
).
17.
R.
Vogel
,
G.
Willmott
,
D.
Kozak
,
G. S.
Roberts
,
W.
Anderson
,
L.
Groenewegen
,
B.
Glossop
,
A.
Barnett
,
A.
Turner
, and
M.
Trau
,
Anal. Chem.
83
,
3499
(
2011
).
18.
G. S.
Roberts
,
S.
Yu
,
Q.
Zeng
,
L. C.
Chan
,
W.
Anderson
,
A. H.
Colby
,
M. W.
Grinstaff
,
S.
Reid
, and
R.
Vogel
,
Biosens. Bioelectron.
31
,
17
(
2012
).
19.
G. R.
Willmott
,
R.
Vogel
,
S. S. C.
Yu
,
L. G.
Groenewegen
,
G. S.
Roberts
,
D.
Kozak
,
W.
Anderson
, and
M.
Trau
,
J. Phys.: Condens. Matter
22
,
454116
(
2010
).
20.
R.
Vogel
,
W.
Anderson
,
J.
Eldridge
,
B.
Glossop
, and
G.
Willmott
,
Anal. Chem.
84
,
3125
(
2012
).
21.
D.
Kozak
,
W.
Anderson
,
M.
Grevett
, and
M.
Trau
,
J. Phys. Chem. C
116
,
8554
(
2012
).
22.
R.
Rodriguez-Trujillo
,
O.
Castillo-Fernandez
,
M.
Garrido
,
M.
Arundell
,
A.
Valencia
, and
G.
Gomila
,
Biosens. Bioelectron.
24
,
290
(
2008
).
23.
R.
Nagarajan
,
B.
Ramana Murthy
, and
L.
Linn
, in
Proceedings of the 5th IEEE Conference on Sensors
(
2006
), pp.
1276
1280
.
24.
Y.
Bellouard
,
A.
Said
,
M.
Dugan
, and
P.
Bado
,
Opt. Express
12
,
2120
(
2004
).
25.
S. H.
Park
,
H.-J.
Shin
,
Y.-H.
Kim
,
D.-Y.
Yang
,
J.-C.
Lee
, and
S.
Lee
,
J. Micromech. Microeng.
22
,
095019
(
2012
).
26.
M.
Rahbar
,
L.
Shannon
, and
B. L.
Gray
,
J. Micromech. Microeng.
24
,
025003
(
2014
).
27.
S.
Natarajan
,
D. A.
Chang-Yen
, and
B. K.
Gale
,
J. Micromech. Microeng.
18
,
045021
(
2008
).
28.
P.
Mao
and
J.
Han
,
Lab Chip
9
,
586
(
2009
).
29.
D. T.
Nguyen
,
Y. T.
Leho
, and
A. P.
Esser-Kahn
,
Lab Chip
12
,
1246
(
2012
).
30.
D. T.
Nguyen
and
A. P.
Esser-Kahn
,
Angew. Chem. Int. Ed.
52
,
13731
(
2013
).
31.
P. J.
Hung
,
P. J.
Lee
,
P.
Sabounchi
,
N.
Aghdam
,
R.
Lin
, and
L. P.
Lee
,
Lab Chip
5
,
44
(
2005
).
32.
M. N.
Hamblin
,
J.
Xuan
,
D.
Maynes
,
H. D.
Tolley
,
D. M.
Belnap
,
A. T.
Woolley
,
M. L.
Lee
, and
A. R.
Hawkins
,
Lab Chip
10
,
173
(
2010
).
33.
S.
Azimi
,
Z.
Dang
,
C.
Zhang
,
J.
Song
,
M. B. H.
Breese
,
C. H.
Sow
,
J. A.
van Kan
, and
J. R. C.
van der Maarel
,
Lab Chip
14
,
2081
(
2014
).
34.
J.
Mannion
,
C.
Reccius
,
J.
Cross
, and
H.
Craighead
,
Biophys. J.
90
,
4538
(
2006
).
35.
P.
Du
,
I.-K.
Lin
,
H.
Lu
, and
X.
Zhang
,
J. Micromech. Microeng.
20
,
095016
(
2010
).
36.
P.
Du
,
C.
Cheng
,
H.
Lu
, and
X.
Zhang
, in
16th International Conference on Miniaturized Systems for Chemistry and Life Sciences
(
2012
), pp.
674
676
.
37.
S. K.
Reddy
,
D. B.
Ferry
, and
A.
Misra
,
RSC Adv.
4
,
50074
(
2014
).
38.
Y.-S.
Yu
and
Y.-P.
Zhao
,
J. Colloid Interface Sci.
332
,
467
(
2009
).
39.
J.
Eshelby
,
Proc. R. Soc. London A Math. Phys. Sci.
241
,
376
(
1957
).
40.
J.
Eshelby
,
Proc. R. Soc. London A Math. Phys. Sci.
252
,
561
(
1959
).
41.
T.
Mura
,
Micromechanics of Defects in Solids
, 2nd ed. (
Kluwer Academic Publishers
,
Dordrecht, The Netherlands
,
1987
).
42.
Y.
Wu
,
W.
Koch
,
E.
Arvay
,
D.
Feng
,
L.
Holland
, and
E.
Juhasz
,
J. Res. Natl. Inst Stand. Technol.
50074
,
241
(
1994
).
You do not currently have access to this content.