State-of-the-art microfabricated ion traps for quantum information research are approaching nearly one hundred control electrodes. We report here on the development and testing of a new architecture for microfabricated ion traps, built around ball-grid array (BGA) connections, that is suitable for increasingly complex trap designs. In the BGA trap, through-substrate vias bring electrical signals from the back side of the trap die to the surface trap structure on the top side. Gold-ball bump bonds connect the back side of the trap die to an interposer for signal routing from the carrier. Trench capacitors fabricated into the trap die replace area-intensive surface or edge capacitors. Wirebonds in the BGA architecture are moved to the interposer. These last two features allow the trap die to be reduced to only the area required to produce trapping fields. The smaller trap dimensions allow tight focusing of an addressing laser beam for fast single-qubit rotations. Performance of the BGA trap as characterized with 40Ca+ ions is comparable to previous surface-electrode traps in terms of ion heating rate, mode frequency stability, and storage lifetime. We demonstrate two-qubit entanglement operations with 171Yb+ ions in a second BGA trap.

1.
D.
Kielpinski
,
C.
Monroe
, and
D. J.
Wineland
, “
Architecture for a large-scale ion-trap quantum computer
,”
Nature
417
,
709
711
(
2002
).
2.
J.
Chiaverini
,
R. B.
Blakestad
,
J.
Britton
,
J. D.
Jost
,
C.
Langer
,
D.
Leibfried
,
R.
Ozeri
, and
D. J.
Wineland
, “
Surface-electrode architecture for ion-trap quantum information processing
,”
Quantum Inf. Comput.
5
,
419
(
2005
).
3.
D.
Stick
,
W. K.
Hensinger
,
S.
Olmschenk
,
M. J.
Madsen
,
K.
Schwab
, and
C.
Monroe
, “
Ion trap in a semiconductor chip
,”
Nat. Phys.
2
,
36
(
2006
).
4.
S.
Seidelin
,
J.
Chiaverini
,
R.
Reichle
,
J. J.
Bollinger
,
D.
Leibfried
,
J.
Britton
,
J. H.
Wesenberg
,
R. B.
Blakestad
,
R. J.
Epstein
,
D. B.
Hume
,
W. M.
Itano
,
J. D.
Jost
,
C.
Langer
,
R.
Ozeri
,
N.
Shiga
, and
D. J.
Wineland
, “
Microfabricated surface-electrode ion trap for scalable quantum information processing
,”
Phys. Rev. Lett.
96
,
253003
(
2006
).
5.
S. A.
Schulz
,
U.
Poschinger
,
F.
Ziesel
, and
F.
Schmidt-Kaler
, “
Sideband cooling and coherent dynamics in a microchip multi-segmented ion trap
,”
New J. Phys.
10
,
045007
(
2008
).
6.
D. T. C.
Allcock
,
J. A.
Sherman
,
D. N.
Stacey
,
A. H.
Burrell
,
M. J.
Curtis
,
G.
Imreh
,
N. M.
Linke
,
D. J.
Szwer
,
S. C.
Webster
,
A. M.
Steane
, and
D. M.
Lucas
, “
Implementation of a symmetric surface-electrode ion trap with field compensation using a modulated Raman effect
,”
New J. Phys.
12
,
053026
(
2010
).
7.
G.
Brady
,
A.
Ellis
,
D.
Moehring
,
D.
Stick
,
C.
Highstrete
,
K.
Fortier
,
M.
Blain
,
R.
Haltli
,
A.
Cruz-Cabrera
,
R.
Briggs
,
J.
Wendt
,
T.
Carter
,
S.
Samora
, and
S.
Kemme
, “
Integration of fluorescence collection optics with a microfabricated surface electrode ion trap
,”
Appl. Phys. B
103
,
801
808
(
2011
).
8.
D. L.
Moehring
,
C.
Highstrete
,
D.
Stick
,
K. M.
Fortier
,
R.
Haltli
,
C.
Tigges
, and
M. G.
Blain
, “
Design, fabrication and experimental demonstration of junction surface ion traps
,”
New J. Phys.
13
,
075018
(
2011
).
9.
K.
Wright
,
J. M.
Amini
,
D. L.
Faircloth
,
C.
Volin
,
S. C.
Doret
,
H.
Hayden
,
C.-S.
Pai
,
D. W.
Landgren
,
D.
Denison
,
T.
Killian
,
R. E.
Slusher
, and
A. W.
Harter
, “
Reliable transport through a microfabricated X - junction surface-electrode ion trap
,”
New J. Phys.
15
,
033004
(
2013
).
10.
S. C.
Doret
,
J. M.
Amini
,
K.
Wright
,
C.
Volin
,
T.
Killian
,
A.
Ozakin
,
D.
Denison
,
H.
Hayden
,
C.
Pai
,
R. E.
Slusher
, and
A. W.
Harter
, “
Controlling trapping potentials and stray electric fields in a microfabricated ion trap through design and compensation
,”
New J. Phys.
14
,
073012
(
2012
).
11.
H.
Rohde
,
S. T.
Gulde
,
C. F.
Roos
,
P. A.
Barton
,
D.
Leibfried
,
J.
Eschner
,
F.
Schmidt-Kaler
, and
R.
Blatt
, “
Sympathetic ground-state cooling and coherent manipulation with two-ion crystals
,”
J. Opt. B: Quantum Semiclassical Opt.
3
,
S34
(
2001
).
12.
R.
Ozeri
,
W. M.
Itano
,
R. B.
Blakestad
,
J.
Britton
,
J.
Chiaverini
,
J. D.
Jost
,
C.
Langer
,
D.
Leibfried
,
R.
Reichle
,
S.
Seidelin
,
J. H.
Wesenberg
, and
D. J.
Wineland
, “
Errors in trapped-ion quantum gates due to spontaneous photon scattering
,”
Phys. Rev. A
75
,
042329
(
2007
).
13.
T.
Choi
,
S.
Debnath
,
T. A.
Manning
,
C.
Figgatt
,
Z.-X.
Gong
,
L.-M.
Duan
, and
C.
Monroe
, “
Optimal quantum control of multimode couplings between trapped ion qubits for scalable entanglement
,”
Phys. Rev. Lett.
112
,
190502
(
2014
).
14.
P.
Maunz
,
M.
Blain
,
F.
Benito
,
C.
Chou
,
C.
Clark
,
M.
Descour
,
R.
Ellis
,
R.
Haltli
,
E.
Heller
,
S.
Kemme
,
J.
Sterk
,
B.
Tabakov
,
C.
Tigges
, and
D.
Stick
, “
Surface ion trap structures with excellent optical access for quantum information processing
,”
Bull. Am. Phys. Soc.
58
,
6
(
2013
); available at http://meetings.aps.org/link/BAPS.2013.DAMOP.C5.4.
15.
D.
Allcock
,
T.
Harty
,
H.
Janacek
,
N.
Linke
,
C.
Ballance
,
A.
Steane
,
D.
Lucas
,
J.
Jarecki
,
R. L.
Jarecki
,
S.
Habermehl
,
M.
Blain
,
D.
Stick
, and
D.
Moehring
, “
Heating rate and electrode charging measurements in a scalable, microfabricated, surface-electrode ion trap
,”
Appl. Phys. B
107
,
913
919
(
2012
).
16.
M.
Harlander
,
M.
Brownnutt
,
W.
Hänsel
, and
R.
Blatt
, “
Trapped-ion probing of light-induced charging effects on dielectrics
,”
New J. Phys.
12
,
093035
(
2010
).
17.
N.
Daniilidis
,
S.
Narayanan
,
S. A.
Möller
,
R.
Clark
,
T. E.
Lee
,
P. J.
Leek
,
A.
Wallraff
,
S.
Schulz
,
F.
Schmidt-Kaler
, and
H.
Häffner
, “
Fabrication and heating rate study of microscopic surface electrode ion traps
,”
New J. Phys.
13
,
013032
(
2011
).
18.
N. D.
Guise
,
S. D.
Fallek
,
H.
Hayden
,
C.-S.
Pai
,
C.
Volin
,
K. R.
Brown
,
J. T.
Merrill
,
A. W.
Harter
,
J. M.
Amini
,
L. M.
Lust
,
K.
Muldoon
,
D.
Carlson
, and
J.
Budach
, “
In-vacuum active electronics for microfabricated ion traps
,”
Rev. Sci. Instrum.
85
,
063101
(
2014
).
19.
R. D.
Graham
,
S.-P.
Chen
,
T.
Sakrejda
,
J.
Wright
,
Z.
Zhou
, and
B. B.
Blinov
, “
A system for trapping barium ions in a microfabricated surface trap
,”
AIP Adv.
4
,
057124
(
2014
).
20.
G.
Vittorini
,
K.
Wright
,
K. R.
Brown
,
A. W.
Harter
, and
S. C.
Doret
, “
Modular cryostat for ion trapping with surface-electrode ion traps
,”
Rev. Sci. Instrum.
84
,
043112
(
2013
).
21.
S.
Narayanan
,
N.
Daniilidis
,
S. A.
Möller
,
R.
Clark
,
F.
Ziesel
,
K.
Singer
,
F.
Schmidt-Kaler
, and
H.
Häffner
, “
Electric field compensation and sensing with a single ion in a planar trap
,”
J. Appl. Phys.
110
,
114909
(
2011
).
22.
Q. A.
Turchette
,
D.
Kielpinski
,
B. E.
King
,
D.
Leibfried
,
D. M.
Meekhof
,
C. J.
Myatt
,
M. A.
Rowe
,
C. A.
Sackett
,
C. S.
Wood
,
W. M.
Itano
,
C.
Monroe
, and
D. J.
Wineland
, “
Heating of trapped ions from the quantum ground state
,”
Phys. Rev. A
61
,
063418
(
2000
).
23.
C.
Balzer
,
A.
Braun
,
T.
Hannemann
,
C.
Paape
,
M.
Ettler
,
W.
Neuhauser
, and
C.
Wunderlich
, “
Electrodynamically trapped Yb+ ions for quantum information processing
,”
Phys. Rev. A
73
,
041407
(
2006
).
24.
S.
Olmschenk
,
K. C.
Younge
,
D. L.
Moehring
,
D. N.
Matsukevich
,
P.
Maunz
, and
C.
Monroe
, “
Manipulation and detection of a trapped Yb+ hyperfine qubit
,”
Phys. Rev. A
76
,
052314
(
2007
).
25.
D.
Hayes
,
D. N.
Matsukevich
,
P.
Maunz
,
D.
Hucul
,
Q.
Quraishi
,
S.
Olmschenk
,
W.
Campbell
,
J.
Mizrahi
,
C.
Senko
, and
C.
Monroe
, “
Entanglement of atomic qubits using an optical frequency comb
,”
Phys. Rev. Lett.
104
,
140501
(
2010
).
26.
W. C.
Campbell
,
J.
Mizrahi
,
Q.
Quraishi
,
C.
Senko
,
D.
Hayes
,
D.
Hucul
,
D. N.
Matsukevich
,
P.
Maunz
, and
C.
Monroe
, “
Ultrafast gates for single atomic qubits
,”
Phys. Rev. Lett.
105
,
090502
(
2010
).
27.
R.
Islam
,
W. C.
Campbell
,
T.
Choi
,
S. M.
Clark
,
C. W. S.
Conover
,
S.
Debnath
,
E. E.
Edwards
,
B.
Fields
,
D.
Hayes
,
D.
Hucul
,
I. V.
Inlek
,
K. G.
Johnson
,
S.
Korenblit
,
A.
Lee
,
K. W.
Lee
,
T. A.
Manning
,
D. N.
Matsukevich
,
J.
Mizrahi
,
Q.
Quraishi
,
C.
Senko
,
J.
Smith
, and
C.
Monroe
, “
Beat note stabilization of mode-locked lasers for quantum information processing
,”
Opt. Lett.
39
,
3238
3241
(
2014
).
28.
A.
Sørensen
and
K.
Mølmer
, “
Entanglement and quantum computation with ions in thermal motion
,”
Phys. Rev. A
62
,
022311
(
2000
).
29.
C. A.
Sackett
,
D.
Kielpinski
,
B. E.
King
,
C.
Langer
,
V.
Meyer
,
C. J.
Myatt
,
M.
Rowe
,
Q. A.
Turchette
,
W. M.
Itano
,
D. J.
Wineland
, and
C.
Monroe
, “
Experimental entanglement of four particles
,”
Nature
404
,
256
259
(
2000
).
30.
M.
Brownnutt
,
M.
Kumph
,
P.
Rabl
, and
R.
Blatt
, “
Ion-trap measurements of electric-field noise near surfaces
,” preprint arXiv:1409.6572v1 (
2014
).
31.
J. M.
Amini
,
H.
Uys
,
J. H.
Wesenberg
,
S.
Seidelin
,
J.
Britton
,
J. J.
Bollinger
,
D.
Leibfried
,
C.
Ospelkaus
,
A. P.
VanDevender
, and
D. J.
Wineland
, “
Toward scalable ion traps for quantum information processing
,”
New J. Phys.
12
,
033031
(
2010
).
32.
C.
Monroe
and
J.
Kim
, “
Scaling the ion trap quantum processor
,”
Science
339
,
1164
1169
(
2013
).
You do not currently have access to this content.