Local probe methods can be used to measure nanoscale surface conductivity, but some techniques including nanoscale four point probe rely on at least two of the probes forming the same low resistivity non-rectifying contact to the sample. Here, the role of probe shank oxide has been examined by carrying out contact and non-contact I V measurements on GaAs when the probe oxide has been controllably reduced, both experimentally and in simulation. In contact, the barrier height is pinned but the barrier shape changes with probe shank oxide dimensions. In non-contact measurements, the oxide modifies the electrostatic interaction inducing a quantum dot that alters the tunneling behavior. For both, the contact resistance change is dependent on polarity, which violates the assumption required for four point probe to remove probe contact resistance from the measured conductivity. This has implications for all nanoscale surface probe measurements and macroscopic four point probe, both in air and vacuum, where the role of probe oxide contamination is not well understood.

1.
P.
Hofmann
and
J. W.
Wells
,
J. Phys.: Condens. Matter
21
(
1
),
013003
(
2009
).
2.
J. C.
Li
,
Y.
Wang
, and
D. C.
Ba
,
Phys. Procedia
32
,
347
355
(
2012
).
3.
L. B.
Valdes
,
Proc. IRE
42
(
2
),
420
427
(
1954
).
4.
A.-P.
Li
,
K. W.
Clark
,
X. G.
Zhang
, and
A. P.
Baddorf
,
Adv. Funct. Mater.
23
(
20
),
2509
2524
(
2013
).
5.
J. W.
Wells
,
J. F.
Kallehauge
, and
P.
Hofmann
,
Surf. Sci.
602
(
10
),
1742
1749
(
2008
).
6.
S.
Hasegawa
and
F.
Grey
,
Surf. Sci.
500
(
1–3
),
84
104
(
2002
).
7.
E.
Hesse
,
IEEE Trans. Instrum. Meas.
IM–31
(
3
),
166
175
(
1982
).
8.
Keithley Application Note Series No. 2481.
9.
Keithley Application Note Series No. 2475.
10.
N.
Chandra
,
V.
Sharma
,
G. Y.
Chung
, and
D. K.
Schroder
,
Solid-State Electron.
64
(
1
),
73
77
(
2011
).
11.
F. M.
Smits
,
Bell Syst. Tech. J.
37
(
3
),
711
718
(
1958
).
12.
S.
Sohn
and
H.-M.
Kim
, “Transparent conductive oxide (TCO) films for organic light emissive eevices (OLEDs),” in
Organic Light Emitting Diode - Material, Process and Devices
(
InTech
,
2011
).
13.
S.
Yoshimoto
,
Y.
Murata
,
K.
Kubo
,
K.
Tomita
,
K.
Motoyoshi
,
T.
Kimura
,
H.
Okino
,
R.
Hobara
,
I.
Matsuda
,
S.-i.
Honda
,
M.
Katayama
, and
S.
Hasegawa
,
Nano Lett.
7
(
4
),
956
959
(
2007
).
14.
S.
Dimitrijev
,
Principles of Semiconductor Devices
(
Oxford University Press
,
New York
,
2006
).
15.
J.
Bardeen
,
Bell Syst. Tech. J.
29
(
4
),
469
495
(
1950
).
16.
C. R.
Crowell
and
S. M.
Sze
,
Solid-State Electron.
9
(
11–12
),
1035
1048
(
1966
).
17.
S. M.
Sze
and
K. K.
Ng
,
Physics of Semiconductor Devices
(
Wiley
,
2006
).
18.
R. T.
Tung
,
Mater. Sci. Eng., R
35
(
1–3
),
1
138
(
2001
).
19.
C.
de Saint-Aubin
,
M.
El Hajj Hassan
,
P.
Kunemann
,
T.
Patois
,
B.
Lakard
,
R.
Fabre
,
J.
Hemmerlé
,
P.
Schaaf
,
M.
Nardin
, and
M.-F.
Vallat
,
Synth. Met.
194
,
38
46
(
2014
).
20.
C.
Durand
,
M.
Berthe
,
Y.
Makoudi
,
J.-P.
Nys
,
R.
Leturcq
,
P.
Caroff
, and
B.
Grandidier
,
Nanotechnology
24
(
27
),
275706
(
2013
).
21.
B.-F.
Ju
,
Y.
Ju
, and
M.
Saka
,
J. Micromech. Microeng.
15
(
12
),
2277
(
2005
).
22.
A. S.
Lucier
,
H.
Mortensen
,
Y.
Sun
, and
P.
Grutter
,
Phys. Rev. B
72
(
23
),
235420
(
2005
).
23.
J. K.
Gimzewski
and
R.
Möller
,
Phys. Rev. B
36
(
2
),
1284
1287
(
1987
).
24.
J.
Shen
,
E. A.
Chagarov
,
D. L.
Feldwinn
,
W.
Melitz
,
N. M.
Santagata
,
A. C.
Kummel
,
R.
Droopad
, and
M.
Passlack
,
J. Chem. Phys.
133
(
16
),
164704
(
2010
).
25.
J. B.
Clemens
,
E. A.
Chagarov
,
M.
Holland
,
R.
Droopad
,
J.
Shen
, and
A. C.
Kummel
,
J. Chem. Phys.
133
(
15
),
154704
(
2010
).
26.
R. J.
Cobley
,
R. A.
Brown
,
C. J.
Barnett
,
T. G. G.
Maffeis
, and
M. W.
Penny
,
Appl. Phys. Lett.
102
(
2
),
023111
(
2013
).
27.
J. P.
Ibe
,
P. P.
Bey
,
S. L.
Brandow
,
R. A.
Brizzolara
,
N. A.
Burnham
,
D. P.
Dilella
,
K. P.
Lee
,
C. R. K.
Marrian
, and
R. J.
Colton
,
J. Vac. Sci. Technol., A
8
(
4
),
3570
3575
(
1990
).
28.
R. J.
Cobley
,
K. S.
Teng
,
M. R.
Brown
,
P.
Rees
, and
S. P.
Wilks
,
Appl. Surf. Sci.
256
(
19
),
5736
5739
(
2010
).
29.
ATLAS User's Manual,
2007
.
30.
O.
Kryvchenkova
,
R. J.
Cobley
, and
K.
Kalna
,
Appl. Surf. Sci.
295
,
173
179
(
2014
).
31.
O.
Kryvchenkova
,
K.
Kalna
, and
R. J.
Cobley
,
Adv. Semicond. Devices Microsys.
2014
,
1
4
.
32.
O.
Kryvchenkova
,
K.
Kalna
, and
R. J.
Cobley
, “The Current Crowding Effect in ZnO Nanowires with an End-Bonded Metal Contact,” in
Proceedings of 5th Int. Conf. on Advanced Nanomaterials (ANM 2014)
(
Aveiro, Portugal
, 2–4 July 2014), accepted in Materials Today: Proceedings (published online 2014).
33.
R.
Tsu
and
L.
Esaki
,
Appl. Phys. Lett.
22
(
11
),
562
564
(
1973
).
34.
P.
Price
and
J.
Radcliffe
,
IBM J. Res. Dev.
3
(
4
),
364
371
(
1959
).
35.
K. H.
Gundlach
,
Solid-State Electron.
9
(
10
),
949
957
(
1966
).
36.
D. K.
Ferry
,
Semiconductors
(
Macmillan
,
1991
).
37.
E. H.
Rhoderick
,
IEE Proc., Part I: Solid-State Electron Devices
129
(
1
),
1
14
(
1982
).
38.
V. L.
Rideout
and
C. R.
Crowell
,
Solid-State Electron.
13
(
7
),
993
(
1970
).
39.
K.
Matsuzawa
,
K.
Uchida
, and
A.
Nishiyama
,
IEEE Trans. Electron Devices
47
(
1
),
103
108
(
2000
).
40.
M.
Ieong
,
P. M.
Solomon
,
S. E.
Laux
,
H. S. P.
Wong
, and
D.
Chidambarrao
,
Electron Devices Meet. Tech. Dig. Int.
1998
,
733
736
.
41.
M.
Prietsch
,
A.
Samsavar
, and
R.
Ludeke
,
Phys. Rev. B
43
(
14
),
11850
11856
(
1991
).
42.
P.
Guaino
,
A. A.
Cafolla
,
O.
McDonald
,
D.
Carty
,
G.
Sheerin
, and
G.
Hughes
,
J. Phys.: Condens. Matter
15
(
38
),
S2693
(
2003
).
You do not currently have access to this content.