Using non-equilibrium Green's function, we study the spin-dependent electron transport properties in a zigzag silicene nanoribbon. To produce and control spin polarization, it is assumed that two ferromagnetic strips are deposited on the both edges of the silicene nanoribbon and an electric field is perpendicularly applied to the nanoribbon plane. The spin polarization is studied for both parallel and anti-parallel configurations of exchange magnetic fields induced by the ferromagnetic strips. We find that complete spin polarization can take place in the presence of perpendicular electric field for anti-parallel configuration and the nanoribbon can work as a perfect spin filter. The spin direction of transmitted electrons can be easily changed from up to down and vice versa by reversing the electric field direction. For parallel configuration, perfect spin filtering can occur even in the absence of electric field. In this case, the spin direction can be changed by changing the electron energy. Finally, we investigate the effects of nonmagnetic Anderson disorder on spin dependent conductance and find that the perfect spin filtering properties of nanoribbon are destroyed by strong disorder, but the nanoribbon retains these properties in the presence of weak disorder.

1.
B.
Lalmi
,
H.
Oughaddou
,
H.
Enriquez
,
A.
Kara
,
S.
Vizzini
,
B.
Ealet
, and
B.
Aufray
,
Appl. Phys. Lett.
97
,
223109
(
2010
).
2.
P.
Vogt
,
P.
De Padova
,
C.
Quaresima
,
J.
Avila
,
E.
Frantzeskakis
,
M. C.
Asensio
,
A.
Resta
,
B.
Ealet
, and
G.
Le Lay
,
Phys. Rev. Lett.
108
,
155501
(
2012
).
3.
X.-T.
An
,
Y.-Y.
Zhang
,
J.-J.
Liu
, and
S.-S.
Li
,
Appl. Phys. Lett.
102
,
213115
(
2013
).
4.
S.
Cahangirov
,
M.
Topsakal
,
E.
Aktürk
,
H.
Şahin
, and
S.
Ciraci
,
Phys. Rev. Lett.
102
,
236804
(
2009
).
5.
P.
De Padova
,
C.
Quaresima
,
C.
Ottaviani
,
P. M.
Sheverdyaeva
,
P.
Moras
,
C.
Carbone
,
D.
Topwal
,
B.
Olivieri
,
A.
Kara
, and
H.
Oughaddou
,
Appl. Phys. Lett.
96
,
261905
(
2010
).
6.
G. G.
Guzmán-Verri
and
L. L. Y.
Voon
,
Phys. Rev. B
76
,
075131
(
2007
).
7.
C.-C.
Liu
,
W.
Feng
, and
Y.
Yao
,
Phys. Rev. Lett.
107
,
076802
(
2011
).
9.
M.
Ezawa
,
Appl. Phys. Lett.
102
,
172103
(
2013
).
10.
S. P.
Dash
,
S.
Sharma
,
R. S.
Patel
,
M. P.
de Jong
, and
R.
Jansen
,
Nature
462
,
491
(
2009
).
11.
W.
Han
and
R. K.
Kawakami
,
Phys. Rev. Lett.
107
,
047207
(
2011
).
12.
C.
Xu
,
G.
Luo
,
Q.
Liu
,
J.
Zheng
,
Z.
Zhang
,
S.
Nagase
,
Z.
Gao
, and
J.
Lu
,
Nanoscale
4
(
10
),
3111
3117
(
2012
).
13.
14.
N.
Drummond
,
V.
Zolyomi
, and
V.
Fal'Ko
,
Phys. Rev. B
85
(
7
),
075423
(
2012
).
15.
S.
Ahmadi
,
M.
Esmaeilzadeh
,
E.
Namvar
, and
G.
Pan
,
AIP Adv.
2
,
012130
(
2012
).
16.
D. A.
Abanin
,
P. A.
Lee
, and
L. S.
Levitov
,
Solid State Commun.
143
,
77
(
2007
).
17.
H.
Haugen
,
D.
Huertas-Hernando
, and
A.
Brataas
,
Phys. Rev. B
77
,
115406
(
2008
).
18.
M.
Wimmer
,
I.
Adagideli
,
S.
Berber
,
D.
Tománek
, and
K.
Richter
,
Phys. Rev. Lett.
100
,
177207
(
2008
).
19.
M.
Popinciuc
,
C.
Józsa
,
P.
Zomer
,
N.
Tombros
,
A.
Veligura
,
H.
Jonkman
, and
B.
Van Wees
,
Phys. Rev. B
80
,
214427
(
2009
).
20.
J.
Guo
,
D.
Gunlycke
, and
C.
White
,
Appl. Phys. Lett.
92
,
163109
(
2008
).
21.
V. N.
Do
,
V. H.
Nguyen
,
P.
Dollfus
, and
A.
Bournel
,
J. Appl. Phys.
104
,
063708
(
2008
).
22.
M.
Esmaeilzadeh
and
S.
Ahmadi
,
J. Appl. Phys.
112
(
10
),
104319
(
2012
).
23.
N.
Tombros
,
C.
Jozsa
,
M.
Popinciuc
,
H. T.
Jonkman
, and
B. J.
Van Wees
,
Nature
448
,
571
(
2007
).
24.
M.
Zeng
,
L.
Shen
,
M.
Yang
,
C.
Zhang
, and
Y.
Feng
,
Appl. Phys. Lett.
98
,
053101
(
2011
).
25.
M. H.
Guimarães
,
A.
Veligura
,
P.
Zomer
,
T.
Maassen
,
I.
Vera-Marun
,
N.
Tombros
, and
B.
van Wees
,
Nano Lett.
12
,
3512
(
2012
).
26.
Y.-T.
Zhang
,
H.
Jiang
,
Q.-f.
Sun
, and
X.
Xie
,
Phys. Rev. B
81
,
165404
(
2010
).
27.
W.-F.
Tsai
,
C.-Y.
Huang
,
T.-R.
Chang
,
H.
Lin
,
H.-T.
Jeng
, and
A.
Bansil
,
Nat. Commun.
4
,
1500
(
2013
).
28.
B.
Bishnoi
and
B.
Ghosh
,
RSC Adv.
3
,
26153
(
2013
).
29.
A.
Yamakage
,
M.
Ezawa
,
Y.
Tanaka
, and
N.
Nagaosa
,
Phys. Rev. B
88
,
085322
(
2013
).
30.
X.-T.
An
,
Y.-Y.
Zhang
,
J.-J.
Liu
, and
S.-S.
Li
,
New J. Phys.
14
(
8
),
083039
(
2012
).
31.
B.
Soodchomshom
,
J. Appl. Phys.
115
,
023706
(
2014
).
32.
H.
Li
,
L.
Wang
,
Q.
Liu
,
J.
Zheng
,
W.-N.
Mei
,
Z.
Gao
,
J.
Shi
, and
J.
Lu
,
Eur. Phys. J. B
85
,
274
(
2012
).
33.
B.
Bishnoi
and
B.
Ghosh
,
J. Comput. Electron.
13
,
186
(
2014
).
34.
D.
Wang
and
G.
Jin
,
Phys. Lett. A
378
(
34
),
2557
(
2014
).
35.
S.
Rachel
and
M.
Ezawa
,
Phys. Rev. B
89
(
19
),
195303
(
2014
).
36.
C.-C.
Liu
,
H.
Jiang
, and
Y.
Yao
,
Phys. Rev. B
84
(
19
),
195430
(
2011
).
37.
Z.
Qiao
,
W.-K.
Tse
,
H.
Jiang
,
Y.
Yao
, and
Q.
Niu
,
Phys. Rev. Lett.
107
,
256801
(
2011
).
38.
S.
Datta
,
Electronic Transport in Mesoscopic Systems
(
Cambridge University Press
,
1997
).
39.
M. L.
Sancho
,
J. L.
Sancho
, and
J.
Rubio
,
J. Phys. F: Met. Phys.
14
(
5
),
1205
(
1984
).
40.
T.
Li
and
S.-P.
Lu
,
Phys. Rev. B
77
,
085408
(
2008
).
41.
B. K.
Nikolic
and
S.
Souma
,
Phys. Rev. B
71
,
195328
(
2005
).
42.
R. L.
Dragomirova
and
B. K.
Nikolic
,
Phys. Rev. B
75
,
085328
(
2007
).
43.
I.
Kleftogiannis
,
I.
Amanatidis
, and
V. A.
Gopar
,
Phys. Rev. B
88
,
205414
(
2013
).
44.
E. R.
Mucciolo
and
C. H.
Lewenkopf
,
J. Phys.: Condens. Matter
22
(
27
),
273201
(
2010
).
45.
D. A.
Areshkin
,
D.
Gunlycke
, and
C. T.
White
,
Nano Lett.
7
,
204
210
(
2007
).
46.
J. H.
Bardarson
,
J.
Tworzydło
,
P.
Brouwer
, and
C.
Beenakker
,
Phys. Rev. Lett.
99
,
106801
(
2007
).
You do not currently have access to this content.