Magnetic phase transition in the Fe60Al40 transition metal aluminide from the ferromagnetic disordered A2-phase to the paramagnetic ordered B2-phase as a function of annealing up to 1000 °C has been investigated by means of magneto-optical and spectroscopy techniques, i.e., Kerr effect, positron annihilation, and Mössbauer spectroscopy. The positron annihilation spectroscopy has been performed in-situ sequentially after each annealing step at the Apparatus for In-situ Defect Analysis that is a unique tool combining positron annihilation spectroscopy with temperature treatment, material evaporation, ion irradiation, and sheet resistance measurement techniques. The overall goal was to investigate the importance of the open volume defects onto the magnetic phase transition. No evidence of variation in the vacancy concentration in matching the magnetic phase transition temperature range (400–600 °C) has been found, whereas higher temperatures showed an increase in the vacancy concentration.
Skip Nav Destination
,
,
,
,
,
,
,
,
,
,
,
Article navigation
28 April 2015
Research Article|
April 24 2015
Open volume defects and magnetic phase transition in Fe60Al40 transition metal aluminide Available to Purchase
M. O. Liedke;
M. O. Liedke
a)
1
Institute of Radiation Physics
, Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
Search for other works by this author on:
W. Anwand;
W. Anwand
1
Institute of Radiation Physics
, Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
Search for other works by this author on:
R. Bali
;
R. Bali
2
Institute of Ion Beam Physics and Materials Research
, Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
Search for other works by this author on:
S. Cornelius
;
S. Cornelius
2
Institute of Ion Beam Physics and Materials Research
, Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
Search for other works by this author on:
M. Butterling;
M. Butterling
1
Institute of Radiation Physics
, Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
Search for other works by this author on:
T. T. Trinh;
T. T. Trinh
1
Institute of Radiation Physics
, Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
3
Technical University Dresden
, Helmholtzstr. 10, 01609 Dresden, Germany
Search for other works by this author on:
A. Wagner
;
A. Wagner
1
Institute of Radiation Physics
, Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
Search for other works by this author on:
S. Salamon;
S. Salamon
4Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE),
University of Duisburg-Essen
, Lotharstraße 1, 47048 Duisburg, Germany
Search for other works by this author on:
D. Walecki
;
D. Walecki
4Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE),
University of Duisburg-Essen
, Lotharstraße 1, 47048 Duisburg, Germany
Search for other works by this author on:
A. Smekhova;
A. Smekhova
4Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE),
University of Duisburg-Essen
, Lotharstraße 1, 47048 Duisburg, Germany
Search for other works by this author on:
H. Wende;
H. Wende
4Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE),
University of Duisburg-Essen
, Lotharstraße 1, 47048 Duisburg, Germany
Search for other works by this author on:
K. Potzger
K. Potzger
2
Institute of Ion Beam Physics and Materials Research
, Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
Search for other works by this author on:
M. O. Liedke
1,a)
W. Anwand
1
R. Bali
2
S. Cornelius
2
M. Butterling
1
T. T. Trinh
1,3
A. Wagner
1
S. Salamon
4
D. Walecki
4
A. Smekhova
4
H. Wende
4
K. Potzger
2
1
Institute of Radiation Physics
, Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
2
Institute of Ion Beam Physics and Materials Research
, Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
3
Technical University Dresden
, Helmholtzstr. 10, 01609 Dresden, Germany
4Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE),
University of Duisburg-Essen
, Lotharstraße 1, 47048 Duisburg, Germany
a)
Author to whom correspondence should be addressed. Electronic mail: [email protected]
J. Appl. Phys. 117, 163908 (2015)
Article history
Received:
February 19 2015
Accepted:
April 13 2015
Citation
M. O. Liedke, W. Anwand, R. Bali, S. Cornelius, M. Butterling, T. T. Trinh, A. Wagner, S. Salamon, D. Walecki, A. Smekhova, H. Wende, K. Potzger; Open volume defects and magnetic phase transition in Fe60Al40 transition metal aluminide. J. Appl. Phys. 28 April 2015; 117 (16): 163908. https://doi.org/10.1063/1.4919014
Download citation file:
Pay-Per-View Access
$40.00
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Citing articles via
Re-examination of important defect complexes in silicon: From microelectronics to quantum computing
P. P. Filippatos, A. Chroneos, et al.
Tutorial: Simulating modern magnetic material systems in mumax3
Jonas J. Joos, Pedram Bassirian, et al.
Piezoelectric thin films and their applications in MEMS: A review
Jinpeng Liu, Hua Tan, et al.
Related Content
Spin pumping at interfaces with ferro- and paramagnetic Fe60Al40 films acting as spin source and spin sink
J. Appl. Phys. (December 2022)
Tuneable magnetic patterning of paramagnetic Fe60Al40 (at. %) by consecutive ion irradiation through pre-lithographed shadow masks
J. Appl. Phys. (May 2011)
Tuning ferromagnetic resonance via disorder/order interfaces
J. Appl. Phys. (May 2019)
Experimental observation of transition from type I to type II ultrafast demagnetization dynamics in chemically disordered Fe60Al40 thin film, driven by laser fluence
J. Appl. Phys. (March 2022)
Single-step gas phase synthesis of stable iron aluminide nanoparticles with soft magnetic properties
APL Mater. (November 2014)