We consider a thermally stable, metallic nanoscale ferromagnet (FM) subject to spin-polarized current injection and exchange coupling from the spin-helically locked surface states of a topological insulator (TI) to evaluate possible non-volatile memory applications. We consider parallel transport in the TI and the metallic FM, and focus on the efficiency of magnetization switching as a function of transport between the TI and the FM. Transport is modeled as diffusive in the TI beneath the FM, consistent with the mobility in the TI at room temperature, and in the FM, which essentially serves as a constant potential region albeit spin-dependent except in the low conductivity, diffusive limit. Thus, it can be captured by drift-diffusion simulation, which allows for ready interpretation of the results. We calculate switching time and energy consumed per write operation using self-consistent transport, spin-transfer-torque (STT), and magnetization dynamics calculations. Calculated switching energies and times compare favorably to conventional spin-torque memory schemes for substantial interlayer conductivity. Nevertheless, we find that shunting of current from the TI to a metallic nanomagnet can substantially limit efficiency. Exacerbating the problem, STT from the TI effectively increases the TI resistivity. We show that for optimum performance, the sheet resistivity of the FM layer should be comparable to or larger than that of the TI surface layer. Thus, the effective conductivity of the FM layer becomes a critical design consideration for TI-based non-volatile memory.

1.
J.
Slonczewski
, “
Current-driven excitation of magnetic multilayers
,”
J. Magn. Magn. Mater.
159
,
L1
L7
(
1996
).
2.
L.
Berger
, “
Emission of spin waves by a magnetic multilayer traversed by a current
,”
Phys. Rev. B
54
,
9353
9358
(
1996
).
3.
M.
Tsoi
,
A. G. M.
Jansen
,
J.
Bass
,
W.-C.
Chiang
,
M.
Seck
,
V.
Tsoi
, and
P.
Wyder
, “
Excitation of a magnetic multilayer by an electric current
,”
Phys. Rev. Lett.
80
,
4281
4284
(
1998
).
4.
Handbook of Spin Transport and Magnetism
edited by
E. Y.
Tsymbal
and
I.
Žutić
(
Chapman and Hall/CRC
,
2012
).
5.
See www.itrs.net for
2013
edition of the technology roadmap for STTRAM.
6.
P. K.
Amiri
and
K. L.
Wang
, “
Voltage-controlled magnetic anisotropy in spintronic devices
,”
SPIN
02
,
1240002
(
2012
).
7.
H.
Zhang
,
C.-X.
Liu
,
X.-L.
Qi
,
X.
Dai
,
Z.
Fang
, and
S.-C.
Zhang
, “
Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single dirac cone on the surface
,”
Nat. Phys.
05
,
438
442
(
2009
).
8.
I.
Garate
and
M.
Franz
, “
Inverse spin-galvanic effect in the interface between a topological insulator and a ferromagnet
,”
Phys. Rev. Lett.
104
,
146802
(
2010
).
9.
Y.
Fan
,
P.
Upadhyaya
,
X.
Kou
,
M.
Lang
,
S.
Takei
,
Z.
Wang
,
J.
Tang
,
L.
He
,
L.-T.
Chang
,
M.
Montazeri
,
G.
Yu
,
W.
Jiang
,
T.
Nie
,
R. N.
Schwartz
,
Y.
Tserkovnyak
, and
K. L.
Wang
, “
Magnetization switching through giant spinorbit torque in a magnetically doped topological insulator heterostructure
,”
Nat. Mater.
13
,
699
704
(
2014
).
10.
Y.
Lu
and
J.
Guo
, “
Quantum simulation of topological insulator based spin transfer torque device
,”
Appl. Phys. Lett.
102
,
073106
(
2013
).
11.
A. R.
Mellnik
,
J. S.
Lee
,
A.
Richardella
,
J. L.
Grab
,
P. J.
Mintun
,
M. H.
Fischer
,
A.
Vaezi
,
A.
Manchon
,
E.-A.
Kim
,
N.
Samarth
, and
D. C.
Ralph
, “
Spin-transfer torque generated by a topological insulator
,”
Nature
511
,
449
451
(
2014
).
12.
T.
Yokoyama
,
J.
Zang
, and
N.
Nagaosa
, “
Theoretical study of the dynamics of magnetization on the topological surface
,”
Phys. Rev. B
81
,
241410
(
2010
).
13.
T.
Yokoyama
, “
Current-induced magnetization reversal on the surface of a topological insulator
,”
Phys. Rev. B
84
,
113407
(
2011
).
14.
P.
Wei
,
F.
Katmis
,
B. A.
Assaf
,
H.
Steinberg
,
P.
Jarillo-Herrero
,
D.
Heiman
, and
J. S.
Moodera
, “
Exchange-coupling-induced symmetry breaking in topological insulators
,”
Phys. Rev. Lett.
110
,
186807
(
2013
).
15.
A.
Kandala
,
A.
Richardella
,
D. W.
Rench
,
D. M.
Zhang
,
T. C.
Flanagan
, and
N.
Samarth
, “
Growth and characterization of hybrid insulating ferromagnet-topological insulator heterostructure devices
,”
Appl. Phys. Lett.
103
,
202409
(
2013
).
16.
L. A.
Wray
,
S.-Y.
Xu
,
Y.
Xia
,
D.
Hsieh
,
A. V.
Fedorov
,
Y. S.
Hor
,
R. J.
Cava
,
A.
Bansil
,
H.
Lin
, and
M. Z.
Hasan
, “
A topological insulator surface under strong coulomb, magnetic and disorder perturbations
,”
Nat. Phys.
7
,
32
37
(
2011
).
17.
T.
Yokoyama
and
Y.
Tserkovnyak
, “
Spin diffusion and magnetoresistance in ferromagnet/topological-insulator junctions
,”
Phys. Rev. B
89
,
035408
(
2014
).
18.
S.
Zhang
,
P. M.
Levy
, and
A.
Fert
, “
Mechanisms of spin-polarized current-driven magnetization switching
,”
Phys. Rev. Lett.
88
,
236601
(
2002
).
19.
M. D.
Stiles
and
A.
Zangwill
, “
Anatomy of spin-transfer torque
,”
Phys. Rev. B
66
,
014407
(
2002
).
20.

However, we note that the out-of-plane current is not proportional to the voltage drop across the interface, because of the shift in the Fermi circle of the TI in presence of a TI surface current. So, in general, this mapping is only approximate.

21.
J.-J.
Zhu
,
D.-X.
Yao
,
S.-C.
Zhang
, and
K.
Chang
, “
Electrically controllable surface magnetism on the surface of topological insulators
,”
Phys. Rev. Lett.
106
,
097201
(
2011
).
22.
D.
Ralph
and
M.
Stiles
, “
Spin transfer torques
,”
J. Magn. Magn. Mater.
320
,
1190
1216
(
2008
).
23.
A.
Aharoni
, “
Demagnetizing factors for rectangular ferromagnetic prisms
,”
J. Appl. Phys.
83
,
3432
3434
(
1998
).
You do not currently have access to this content.