Organic-inorganic nanoparticle molecular hybrid materials are interesting candidates for improving exciton separation in organic solar cells. The orbital alignment at the internal interface of cadmium selenide (ArS-CdSe) hybrid materials functionalized with covalently attached arylthiolate moieties was investigated through X-ray photoemission spectroscopy (XPS) and ultraviolet photoemission spectroscopy (UPS). A physisorbed interface between arylthiol (ArSH) ligands and CdSe nanoparticles was also investigated for comparison. This interface was created via a multi-step thin film deposition procedure in-vacuo, where the surface was characterized after each experimental step. This enabled the direct comparison of ArSH/CdSe interfaces produced via physisorption and ArS-CdSe covalently attached hybrid materials, which rely on a chemical reaction for their synthesis. All material depositions were performed using an electrospray deposition, which enabled the direct injection of solution-originating molecular species into the vacuum system. This method allows XPS and UPS measurements to be performed immediately after deposition without exposure to the atmosphere. Transmission electron microscopy was used to determine the morphology and particle size of the deposited materials. Ultraviolet-visible spectroscopy was used to estimate the optical band gap of the CdSe nanoparticles and the HOMO-LUMO gap of the ArSH ligands. These experiments showed that hybridization via covalent bonds results in an orbital realignment at the ArSH/CdSe interface in comparison to the physisorbed interface. The orbital alignment within the hybrid caused a favorable electron injection barrier, which likely facilitates exciton-dissociation while preventing charge-recombination.

1.
I.
β€ˆ
Lokteva
,
N.
β€ˆ
Radychev
,
F.
β€ˆ
Witt
,
H.
β€ˆ
Borchert
,
J.
β€ˆ
Parisi
, and
J.
β€ˆ
Kolny-Olesiak
, β€œ
Surface treatment of CdSe nanoparticles for application in hybrid solar cells: The effect of multiple ligand exchange with pyridine
,”
J. Phys. Chem. C
β€ˆ
114
(
29
),
12784
–
12791
(
2010
).
2.
S.
β€ˆ
Dayal
,
N.
β€ˆ
Kopidakis
,
D. C.
β€ˆ
Olson
,
D. S.
β€ˆ
Ginley
, and
G.
β€ˆ
Rumbles
, β€œ
Photovoltaic devices with a low band gap polymer and CdSe nanostructures exceeding 3% efficiency
,”
Nano Lett.
β€ˆ
10
(
1
),
239
–
242
(
2009
).
3.
S.
β€ˆ
Coe
,
W.-K.
β€ˆ
Woo
,
M.
β€ˆ
Bawendi
, and
V.
β€ˆ
Bulovic
, β€œ
Electroluminescence from single monolayers of nanocrystals in molecular organic devices
,”
Nature
β€ˆ
420
(
6917
),
800
–
803
(
2002
).
4.
N. C.
β€ˆ
Greenham
,
X.
β€ˆ
Peng
, and
A. P.
β€ˆ
Alivisatos
, β€œ
Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity
,”
Phys. Rev. B
β€ˆ
54
(
24
),
17628
–
17637
(
1996
).
5.
A.
β€ˆ
Persano
,
G.
β€ˆ
Leo
,
L.
β€ˆ
Manna
, and
A.
β€ˆ
Cola
, β€œ
Charge carrier transport in thin films of colloidal CdSe quantum rods
,”
J. Appl. Phys.
β€ˆ
104
(
7
),
074306
(
2008
).
6.
Y.
β€ˆ
Yi
,
J. E.
β€ˆ
Lyon
,
M. M.
β€ˆ
Beerbom
, and
R.
β€ˆ
Schlaf
, β€œ
Orbital alignment at poly 2-methoxy-5-(2(β€²)-ethylhexyloxy)-p-phenylene vinylene interfaces
,”
J. Appl. Phys.
β€ˆ
102
(
2
),
023710
(
2007
).
7.
M.
β€ˆ
Helgesen
,
R.
β€ˆ
Sondergaard
, and
F. C.
β€ˆ
Krebs
, β€œ
Advanced materials and processes for polymer solar cell devices
,”
J. Mater. Chem.
β€ˆ
20
(
1
),
36
–
60
(
2010
).
8.
Y. Y.
β€ˆ
Liang
,
Z.
β€ˆ
Xu
,
J. B.
β€ˆ
Xia
,
S. T.
β€ˆ
Tsai
,
Y.
β€ˆ
Wu
,
G.
β€ˆ
Li
,
C.
β€ˆ
Ray
, and
L. P.
β€ˆ
Yu
, β€œ
For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%
,”
Adv. Mater.
β€ˆ
22
(
20
),
E135
(
2010
).
9.
C.
β€ˆ
Radhakrishnan
,
M. K. F.
β€ˆ
Lo
,
C. M.
β€ˆ
Knobler
,
M. A.
β€ˆ
Garcia-Garibay
, and
H. G.
β€ˆ
Monbouquette
, β€œ
Capping-ligand effect on the stability of CdSe quantum dot langmuir monolayers
,”
Langmuir
β€ˆ
27
(
6
),
2099
–
2103
(
2011
).
10.
D. S.
β€ˆ
Ginger
and
N. C.
β€ˆ
Greenham
, β€œ
Charge injection and transport in films of CdSe nanocrystals
,”
J. Appl. Phys.
β€ˆ
87
(
3
),
1361
–
1368
(
2000
).
11.
Z. O.
β€ˆ
Araci
,
C. R.
β€ˆ
Shallcross
,
N. R.
β€ˆ
Armstrong
, and
S. S.
β€ˆ
Saavedra
, β€œ
Potential-modulated attenuated total reflectance characterization of charge injection processes in monolayer-tethered CdSe nanocrystals
,”
J. Phys. Chem. Lett.
β€ˆ
1
(
12
),
1900
–
1905
(
2010
).
12.
H.
β€ˆ
Gommans
,
S.
β€ˆ
Schols
,
A.
β€ˆ
Kadashchuk
,
P.
β€ˆ
Heremans
, and
S. C. J.
β€ˆ
Meskers
, β€œ
Exciton diffusion length and lifetime in subphthalocyanine films
,”
J. Phys. Chem. C
β€ˆ
113
(
7
),
2974
–
2979
(
2009
).
13.
I. S.
β€ˆ
Liu
,
H.-H.
β€ˆ
Lo
,
C.-T.
β€ˆ
Chien
,
Y.-Y.
β€ˆ
Lin
,
C.-W.
β€ˆ
Chen
,
Y.-F.
β€ˆ
Chen
,
W.-F.
β€ˆ
Su
, and
S.-C.
β€ˆ
Liou
, β€œ
Enhancing photoluminescence quenching and photoelectric properties of CdSe quantum dots with hole accepting ligands
,”
J. Mater. Chem.
β€ˆ
18
(
6
),
675
–
682
(
2008
).
14.
A. J.
β€ˆ
Cascio
,
J. E.
β€ˆ
Lyon
,
M. M.
β€ˆ
Beerbom
,
R.
β€ˆ
Schlaf
,
Y.
β€ˆ
Zhu
, and
S. A.
β€ˆ
Jenekhe
, β€œ
Investigation of a polythiophene interface using photoemission spectroscopy in combination with electrospray thin-film deposition
,”
Appl. Phys. Lett.
β€ˆ
88
(
6
),
062104
(
2006
).
15.
N. A.
β€ˆ
Ogurtsov
,
A. A.
β€ˆ
Pud
,
O. P.
β€ˆ
Dimitriev
,
Y. P.
β€ˆ
Piryatinski
,
P. S.
β€ˆ
Smertenko
,
Y. V.
β€ˆ
Noskov
, and
A. S.
β€ˆ
Kutsenko
, β€œ
Synthesis and properties of hybrid poly(3-Methylthiophene)-CdSe nanocomposite and estimation of its photovoltaic ability
,”
Mol. Cryst. Liq. Cryst.
β€ˆ
536
(
1
),
33/[265]
–
40/[272]
(
2011
).
16.
K. A.
β€ˆ
Mazzio
,
K.
β€ˆ
Okamoto
,
Z.
β€ˆ
Li
,
S.
β€ˆ
Gutmann
,
E.
β€ˆ
Strein
,
D. S.
β€ˆ
Ginger
,
R.
β€ˆ
Schlaf
, and
C. K.
β€ˆ
Luscombe
, β€œ
A one pot organic/CdSe nanoparticle hybrid material synthesis with in situ [small pi]-conjugated ligand functionalization
,”
Chem. Commun.
β€ˆ
49
(
13
),
1321
–
1323
(
2013
).
17.
Z.
β€ˆ
Li
,
H.
β€ˆ
Berger
,
K.
β€ˆ
Okamoto
,
Q.
β€ˆ
Zhang
,
C. K.
β€ˆ
Luscombe
,
G.
β€ˆ
Cao
, and
R.
β€ˆ
Schlaf
, β€œ
Measurement of the internal orbital alignment of oligothiophene-TiO2 nanoparticle hybrids
,”
J. Phys. Chem. C
β€ˆ
117
(
27
),
13961
–
13970
(
2013
).
18.
W. W.
β€ˆ
Yu
and
X.
β€ˆ
Peng
, β€œ
Formation of high
‐
quality CdS and other II–VI semiconductor nanocrystals in noncoordinating solvents: tunable reactivity of monomers
,”
Angew. Chem. Int. Ed.
β€ˆ
41
(
13
),
2368
–
2371
(
2002
).
19.
N.
β€ˆ
Dam
,
M. M.
β€ˆ
Beerbom
,
J. C.
β€ˆ
Braunagel
, and
R.
β€ˆ
Schlaf
, β€œ
Photoelectron spectroscopic investigation of in-vacuum-prepared luminescent polymer thin films directly from solution
,”
J. Appl. Phys.
β€ˆ
97
(
2
),
024909
(
2005
).
20.
J. E. B.
β€ˆ
Katari
,
V. L.
β€ˆ
Colvin
, and
A. P.
β€ˆ
Alivisatos
, β€œ
X-ray photoelectron spectroscopy of CdSe nanocrystals with applications to studies of the nanocrystal surface
,”
J. Phys. Chem.
β€ˆ
98
(
15
),
4109
–
4117
(
1994
).
21.
T.
β€ˆ
Takagahara
and
K.
β€ˆ
Takeda
, β€œ
Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials
,”
Phys. Rev. B
β€ˆ
46
(
23
),
15578
–
15581
(
1992
).
22.
M.
β€ˆ
Chamarro
,
C.
β€ˆ
Gourdon
,
P.
β€ˆ
Lavallard
,
O.
β€ˆ
Lublinskaya
, and
A. I.
β€ˆ
Ekimov
, β€œ
Enhancement of electron-hole exchange interaction in CdSe nanocrystals: A quantum confinement effect
,”
Phys. Rev. B
β€ˆ
53
(
3
),
1336
–
1342
(
1996
).
23.
R. W.
β€ˆ
Meulenberg
,
J. R.
β€ˆ
Lee
,
A.
β€ˆ
Wolcott
,
J. Z.
β€ˆ
Zhang
,
L. J.
β€ˆ
Terminello
, and
T.
β€ˆ
van Buuren
, β€œ
Determination of the exciton binding energy in CdSe quantum dots
,”
ACS nano
β€ˆ
3
(
2
),
325
–
330
(
2009
).
24.
S.
β€ˆ
Pokrant
and
K. B.
β€ˆ
Whaley
, β€œ
Tight-binding studies of surface effects on electronic structure of CdSe nanocrystals: The role of organic ligands, surface reconstruction, and inorganic capping shells
,”
Eur. Phys. J. D
β€ˆ
6
(
2
),
255
–
267
(
1999
).
25.
J.
β€ˆ
Albero
,
E.
β€ˆ
Martinez-Ferrero
,
D.
β€ˆ
Iacopino
,
A.
β€ˆ
Vidal-Ferran
, and
E.
β€ˆ
Palomares
, β€œ
Interfacial charge transfer dynamics in CdSe/dipole molecules coated quantum dot polymer blends
,”
Phys. Chem. Chem. Phys.
β€ˆ
12
(
40
),
13047
–
13051
(
2010
).
26.
J.
β€ˆ
Taylor
,
T.
β€ˆ
Kippeny
, and
S. J.
β€ˆ
Rosenthal
, β€œ
Surface stoichiometry of CdSe nanocrystals determined by Rutherford backscattering spectroscopy
,”
J. Clust. Sci.
β€ˆ
12
(
4
),
571
–
582
(
2001
).
27.
R. G.
β€ˆ
Pearson
, β€œ
Hard and Soft acids and bases
,”
J. Am. Chem. Soc.
β€ˆ
85
(
22
),
3533
–
3539
(
1963
).
28.
Z.
β€ˆ
Liang
,
K. L.
β€ˆ
Dzienis
,
J.
β€ˆ
Xu
, and
Q.
β€ˆ
Wang
, β€œ
Covalent layer-by-layer assembly of conjugated polymers and CdSe nanoparticles: multilayer structure and photovoltaic properties
,”
Adv. Funct. Mater.
β€ˆ
16
(
4
),
542
–
548
(
2006
).
29.
S.
β€ˆ
Xiong
,
S. L.
β€ˆ
Phua
,
B. S.
β€ˆ
Dunn
,
J.
β€ˆ
Ma
, and
X.
β€ˆ
Lu
, β€œ
Covalently bonded polyanilineβˆ’TiO2 hybrids: A facile approach to highly stable anodic electrochromic materials with low oxidation potentials
,”
Chem. Mater.
β€ˆ
22
(
1
),
255
–
260
(
2009
).
You do not currently have access to this content.