In order to develop and verify a dielectric breakdown model for bulk insulators thicker than 100 μm, the knowledge of the dominating conduction mechanism at high electric fields, or respectively voltages, is necessary. The dielectric breakdown is the electrical failure of an insulator. In some existing breakdown models, ohmic conduction is assumed as dominating conduction mechanism. For verification, the dominating dc conduction mechanism of bulk insulators at room temperature was investigated by applying high voltages up to 70 kV to the insulator until dielectric breakdown occurs. Four conduction models, namely, ohmic, space charge limited, Schottky, and Poole-Frenkel conduction, were employed to identify the dominating conduction mechanism. Comparing the calculated permittivities from the Schottky and Poole-Frenkel coefficients with experimentally measured permittivity, Schottky and Poole-Frenkel conduction can be excluded as dominating conduction mechanism. Based on the current density voltage characteristics (J-V-curve) and the thickness-dependence of the current density, space charge limited conduction (SCLC) was identified to be the dominating conduction mechanism at high voltages leading to dielectric breakdown. As a consequence, breakdown models based on ohmic conduction are not appropriate to explain the breakdown of the investigated bulk insulators. Furthermore, the electrical failure of the examined bulk insulators can only be described correctly by a breakdown model which includes SCLC as conduction mechanism.

1.
G. D.
Wilk
,
R. M.
Wallace
, and
J. M.
Anthony
,
J. Appl. Phys.
89
,
5243
(
2001
).
2.
J.
Kolodzey
,
E.
Chowdhury
,
T.
Adam
,
G.
Qui
,
I.
Rau
,
J.
Olowolafe
,
J.
Suehle
, and
Y.
Chen
,
IEEE Trans. Electron Devices
47
,
121
(
2000
).
3.
D.-G.
Park
,
H.-J.
Cho
,
K.-Y.
Lim
,
C.
Lim
,
I.-S.
Yeo
,
J.-S.
Roh
, and
J. W.
Park
,
J. Appl. Phys.
89
,
6275
(
2001
).
4.
A.
Chin
,
Y.
Wu
,
S.
Chen
,
C.
Liao
, and
W.
Chen
,
Tech. Dig. Symp. VLSI Technol.
2000
,
16
17
.
5.
K.
Abe
and
S.
Komatsu
,
Jpn. J. Appl. Phys., Part 1
31
,
2985
(
1992
).
6.
K.
Abe
and
S.
Komatsu
,
Jpn. J. Appl. Phys., Part 1
32
,
4186
(
1993
).
7.
Y.
Fukuda
,
K.
Aoki
,
K.
Numata
, and
A.
Nishimura
,
Jpn. J. Appl. Phys., Part 1
33
,
5255
(
1994
).
8.
Z.
Yu
,
J.
Ramdani
,
J. A.
Curless
,
J. M.
Finder
,
C. D.
Overgaard
,
R.
Droopad
,
K. W.
Eisenbeiser
,
J. A.
Hallmark
,
W. J.
Ooms
,
J. R.
Conner
, and
V. S.
Kaushik
,
J. Vac. Sci. Technol. B
18
,
1653
(
2000
).
9.
J. P.
Chang
and
Y.-S.
Lin
,
Appl. Phys. Lett.
79
,
3666
(
2001
).
10.
H.-M.
Kwon
,
I.-S.
Han
,
S.-U.
Park
,
J.-D.
Bok
,
Y.-J.
Jung
,
H.-S.
Shin
,
C.-Y.
Kang
,
B.-H.
Lee
,
R.
Jammy
,
G.-W.
Lee
, and
H.-D.
Lee
,
Jpn. J. Appl. Phys., Part 2
50
,
04DD02
(
2011
).
11.
M.
Kamijyo
,
T.
Onozuka
,
S.
Shinkai
,
K.
Sasaki
,
M.
Yamane
, and
Y.
Abe
,
Jpn. J. Appl. Phys., Part 1
42
,
4399
4403
(
2003
).
12.
T.
Kolodiazhnyi
,
A.
Petric
, and
G. P.
Johari
,
J. Appl. Phys.
89
,
3939
(
2001
).
13.
H.
Lee
,
K.-C.
Lee
,
J.
Schunke
, and
L.
Burton
,
IEEE Trans. Comp. Hybrids Manufact. Technol.
7
,
443
(
1984
).
14.
Z.
Surowiak
,
Czech J. Phys.
29
,
203
(
1979
).
15.
L.
Benguigui
,
Solid State Commun.
7
,
1245
(
1969
).
16.
W.
Osak
and
K.
Tkacz
,
J. Phys. D: Appl. Phys.
22
,
1746
(
1989
).
17.
G. W.
Dietz
,
M.
Schumacher
,
R.
Waser
,
S. K.
Streiffer
,
C.
Basceri
, and
A. I.
Kingon
,
J. Appl. Phys.
82
,
2359
(
1997
).
18.
J.
Li
,
X.
Dong
,
Y.
Chen
, and
Y.
Zhang
,
Appl. Phys. Lett.
88
,
212905
(
2006
).
19.
S.
Zafar
,
R. E.
Jones
,
B.
Jiang
,
B.
White
,
V.
Kaushik
, and
S.
Gillespie
,
Appl. Phys. Lett.
73
,
3533
(
1998
).
20.
S. A.
Campbell
,
H.-S.
Kim
,
D. C.
Gilmer
,
B.
He
,
T.
Ma
, and
W. L.
Gladfelter
,
IBM J. Res. Dev.
43
,
383
(
1999
).
21.
X.
Cao
,
X. M.
Li
,
X. D.
Gao
,
Y. W.
Zhang
,
X. J.
Liu
,
Q.
Wang
, and
L. D.
Chen
,
Appl. Phys. A
97
,
883
(
2009
).
22.
B.
Karunagaran
,
S.
Chung
,
E.-K.
Suh
, and
D.
Mangalaraj
,
Physica B: Condens. Matter
369
,
129
(
2005
).
23.
K. M.
Kim
,
B. J.
Choi
,
Y. C.
Shin
,
S.
Choi
, and
C. S.
Hwang
,
Appl. Phys. Lett.
91
,
12907
(
2007
).
24.
F.
Talbi
,
F.
Lalam
, and
D.
Malec
,
J. Phys. D: Appl. Phys.
40
,
3803
(
2007
).
25.
T.
Lebey
,
D.
Malec
,
V.
Bley
,
F.
Breit
, and
E.
Dutarde
, in
5th International Conference on Power Electronics and Drive Systems
, 17-20 November
2003
, pp.
55
59
.
26.
L.
Roske
,
T.
Lebey
, and
Z.
Valdez-Nava
, in
IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP)
(
2013
), pp.
595
598
.
27.
F.
Breit
,
T.
Lebey
,
S.
Agnel
, and
A.
Toureille
, in
Annual Report Conference on Electrical Insulation and Dielectric Phenomena
, 14–17 October
2001
, pp.
71
74
.
28.
S.
Agnel
,
J.
Castellon
,
H. H.
Huy
,
P.
Notingher
, and
A.
Toureille
, in
Annual Report Conference on Electrical Insulation and Dielectric Phenomena (CEIDP)
(
2008
), pp.
145
148
.
29.
H.
Ogihara
,
C. A.
Randall
, and
S.
Trolier-McKinstry
,
J. Am. Ceram. Soc.
92
,
1719
(
2009
).
30.
E. P.
Gorzkowski
,
M.-J.
Pan
,
B.
Bender
, and
C. C. M.
Wu
,
J. Electroceram.
18
,
269
(
2007
).
31.
X.
Zhou
,
X.
Zhao
,
Z.
Suo
,
C.
Zou
,
J.
Runt
,
S.
Liu
,
S.
Zhang
, and
Q. M.
Zhang
,
Appl. Phys. Lett.
94
,
162901
(
2009
).
32.
J. Y.
Li
,
L.
Zhang
, and
S.
Ducharme
,
Appl. Phys. Lett.
90
,
132901
(
2007
).
33.
C.
Neusel
and
G. A.
Schneider
,
J. Mech. Phys. Solids
63
,
201
(
2014
).
34.
A. v.
Hippel
,
Z. Phys.
67
,
707
(
1931
).
35.
A. v.
Hippel
,
Z. Phys.
68
,
309
(
1931
).
36.
A. v.
Hippel
,
Z. Phys.
75
,
145
(
1932
).
37.
I. O.
Owate
and
R.
Freer
,
J. Mater. Sci.
25
,
5291
(
1990
).
38.
D.
Malec
,
V.
Bley
,
F.
Talbi
, and
F.
Lalam
,
J. Eur. Ceram. Soc.
30
,
3117
(
2010
).
39.
C.
Neusel
,
H.
Jelitto
,
D.
Schmidt
,
R.
Janssen
,
F.
Felten
, and
G. A.
Schneider
, “Thickness-dependence of the breakdown strength: Analysis of the dielectric and mechanical failure,”
J. Eur. Ceram. Soc.
35
(1),
113
123
(
2015
).
40.
G.
Blaise
,
J. Appl. Phys.
77
,
2916
(
1995
).
41.
G.
Chen
,
J.
Zhao
,
S.
Li
, and
L.
Zhong
,
Appl. Phys. Lett.
100
,
222904
(
2012
).
42.
G. A.
Schneider
,
J. Mech. Phys. Solids
61
,
78
(
2013
).
43.
H. H.
Barrett
,
J. Appl. Phys.
35
,
1420
(
1964
).
44.
F.
Cardon
,
J. Appl. Phys.
33
,
3358
(
1962
).
45.
T. P.
Pearsall
,
J. Phys. D: Appl. Phys.
3
,
1837
(
1970
).
46.
J. A.
van Raalte
,
J. Appl. Phys.
36
,
3365
(
1965
).
47.
M. A.
Lampert
and
P.
Mark
,
Current Injection in Solids
(
Academic Press
,
New York, London
,
1970
).
48.
C.
Neusel
and
G. A.
Schneider
, in
IEEE International Conference on Solid Dielectrics (ICSD)
(
2013
), pp.
31
35
.
50.
H.
Hu
and
S.
Krupanidhi
,
J. Mater. Res.
9
,
1484
(
1994
).
51.
H.-M.
Chen
,
J.-M.
Lan
,
J.-L.
Chen
, and
J. Y.
Lee
,
Appl. Phys. Lett.
69
,
1713
(
1996
).
52.
K.-C.
Kao
,
Dielectric Phenomena in Solids
(
Academic Press
,
Amsterdam, Boston
,
2004
).
53.
S. M.
Sze
and
K. K.
Ng
,
Physics of Semiconductor Devices
, 3rd ed. (
Wiley-Interscience
,
Hoboken, NJ
,
2007
).
55.
C.
Neusel
,
H.
Jelitto
,
D.
Schmidt
,
R.
Janssen
,
F.
Felten
, and
G.
Schneider
,
J. Eur. Ceram. Soc.
32
,
1053
(
2012
).
56.
57.
J.
McPherson
,
J.
Kim
,
A.
Shanware
,
H.
Mogul
, and
J.
Rodriguez
,
IEEE Int. Electron Devices Meet.
2002
,
633
636
.
58.
L. A.
Dissado
and
J. C.
Fothergill
,
Electrical Degradation and Breakdown in Polymers
(
P. Peregrinus
,
London
,
1992
).
59.
L.
Fahrmeir
,
Statistik
, 7th ed. (
Springer
,
Berlin, Heidelberg
,
2010
).
60.
B. K.
Ridley
,
Proc. Phys. Soc.
82
,
954
(
1963
).
61.
K. W.
Wagner
,
Arch. Elektrotech.
39
,
215
(
1948
).
You do not currently have access to this content.