This paper explores the use of single-walled carbon nanotube (SWCNT)/poly(butyl methacrylate) composites as a material for use in unconventional computing. The mechanical and electrical properties of the materials are investigated. The resulting data reveal a correlation between the SWCNT concentration/viscosity/conductivity and the computational capability of the composite. The viscosity increases significantly with the addition of SWCNTs to the polymer, mechanically reinforcing the host material and changing the electrical properties of the composite. The electrical conduction is found to depend strongly on the nanotube concentration; Poole-Frenkel conduction appears to dominate the conductivity at very low concentrations (0.11% by weight). The viscosity and conductivity both show a threshold point around 1% SWCNT concentration; this value is shown to be related to the computational performance of the material. A simple optimization of threshold logic gates shows that satisfactory computation is only achieved above a SWCNT concentration of 1%. In addition, there is some evidence that further above this threshold the computational efficiency begins to decrease.

1.
J.
Miller
,
S.
Harding
, and
G.
Tufte
, “
Evolution-in-materio: evolving computation in materials
,”
Evol. Intell.
7
,
49
67
(
2014
).
2.
H.
Broersma
,
F.
Gomez
,
F.
Miller
,
M.
Petty
, and
G.
Tufte
, “
NASCENCE project: Nanoscale engineering for novel computation using evolution
,”
Int. J. Unconvent. Comput.
8
,
313
317
(
2012
).
3.
A.
Kostsialos
,
M. K.
Massey
,
F.
Qaiser
,
D. A.
Zeze
,
C.
Pearson
, and
M. C.
Petty
, “
Logic gate and circuit training on randomly dispersed carbon nanotubes
,”
Int. J. Unconvent. Comput.
10
,
473
497
(
2014
).
4.
N. G.
Sahoo
,
S.
Rana
,
J. W.
Cho
,
L.
Li
, and
S. H.
Chan
, “
Polymer nanocomposites based on functionalized carbon nanotubes
,”
Prog. Polym. Sci.
35
,
837
867
(
2010
), topical Issue on Nanocomposites.
5.
W.
Bauhofer
and
J. Z.
Kovacs
, “
A review and analysis of electrical percolation in carbon nanotube polymer composites
,”
Compos. Sci. Technol.
69
,
1486
1498
(
2009
), CNT-NET 07 Special Issue with regular papers.
6.
V.
Skákalová
,
U.
Dettlaff-Weglikowska
, and
S.
Roth
, “
Electrical and mechanical properties of nanocomposites of single wall carbon nanotubes with pmma
,”
Synth. Met.
152
,
349
352
(
2005
);
Proceedings of the International Conference on Science and Technology of Synthetic Metals
.
7.
J. A.
Nelder
and
R.
Mead
, “
A simplex method for function minimization
,”
Comput. J.
7
,
308
313
(
1965
).
8.
C. T.
Kelley
,
Iterative Methods for Optimization
(
Siam
,
1999
), Vol.
18
.
9.
S.
Schulz
,
G.
Faiella
,
S.
Buschhorn
,
L.
Prado
,
M.
Giordano
,
K.
Schulte
, and
W.
Bauhofer
, “
Combined electrical and rheological properties of shear induced multiwall carbon nanotube agglomerates in epoxy suspensions
,”
Eur. Polym. J.
47
,
2069
2077
(
2011
).
10.
O.
Regev
,
P.
ElKati
,
J.
Loos
, and
C.
Koning
, “
Preparation of conductive nanotubepolymer composites using latex technology
,”
Adv. Mater.
16
,
248
251
(
2004
).
11.
A.
Ltaief
,
A.
Bouazizi
, and
J.
Davenas
, “
Charge transport in carbon nanotubes-polymer composite photovoltaic cells
,”
Materials
2
,
710
718
(
2009
).
12.
A. S.
Jombert
,
K. S.
Coleman
,
D.
Wood
,
M. C.
Petty
, and
D. A.
Zeze
, “
Poole-Frenkel conduction in single wall nanotube composite films built up by electrostatic layer-by-layer deposition
,”
J. Appl. Phys.
104
,
094503
(
2008
).
13.
D. J.
Perello
,
W. J.
Yu
,
D. J.
Bae
,
S. J.
Chae
,
M. J.
Kim
,
Y. H.
Lee
, and
M.
Yun
, “
Analysis of hopping conduction in semiconducting and metallic carbon nanotube devices
,”
J. Appl. Phys.
105
,
124309
(
2009
).
You do not currently have access to this content.