In this work, a method is presented to extend traditional solar cell simulation tools to make it possible to calculate the most efficient design of practical solar cells. The method is based on the theory of nonequilibrium thermodynamics, which is used to derive an expression for the local entropy generation rate in the solar cell, making it possible to quantify all free energy losses on the same scale. The framework of non-equilibrium thermodynamics can therefore be combined with the calculus of variations and existing solar cell models to minimize the total entropy generation rate in the cell to find the most optimal design. The variational method is illustrated by applying it to a homojunction solar cell. The optimization results in a set of differential algebraic equations, which determine the optimal shape of the doping profile for given recombination and transport models.

1.
W.
Shockley
and
H. J.
Queisser
,
J. Appl. Phys.
32
,
510
(
1961
).
2.
C. H.
Henry
,
J. Appl. Phys.
51
,
4494
(
1980
).
3.
A.
De Vos
and
H.
Pauwels
,
Appl. Phys.
25
,
119
(
1981
).
4.
A.
Richter
,
M.
Hermle
, and
S. W.
Glunz
,
IEEE J. Photovolt.
3
,
1184
(
2013
).
5.
D.
Clugston
and
P.
Basore
, in
Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference-1997
(
IEEE
,
1997
), pp.
207
210
.
6.
R.
Stangl
,
C.
Leendertz
, and
J.
Haschke
, in
Solar Energy
, edited by
R. D.
Rugescu
(
InTech
,
2010
), pp.
319
352
.
7.
B.
Pieters
,
J.
Krc
, and
M.
Zeman
, in
2006 IEEE 4th World Conference on Photovoltaic Energy Conference
(
IEEE
,
2006
), pp.
1513
1516
.
8.
P.
Würfel
,
Physics of Solar Cells
(
Wiley-VCH Verlag GmbH & Co
,
2005
).
9.
S.
de Groot
and
P.
Mazur
,
Non-equilibrium Thermodynamics
(
Dover Publications
,
1984
).
10.
G. D.
Kuiken
,
Thermodynamics of Irreversible Processes
(
Wiley
,
1994
).
11.
M. L.
Bellac
,
F.
Mortessagne
, and
G. G.
Batrouni
,
Equilibrium and Non-Equilibrium Statistical Thermodynamics
(
Cambridge University Press
,
2004
).
12.
S.
Kjelstrup
and
D.
Bedeaux
,
Non-Equilibrium Thermodynamics of Heterogeneous Systems
(
World Scientific Publishing Co. Pte. Ltd.
,
2008
).
13.
U.
Lindefelt
,
J. Appl. Phys.
75
,
942
(
1994
).
14.
J.
Parrott
,
IEEE Trans. Electron Devices
43
,
809
(
1996
).
15.
A.
Polman
and
H. A.
Atwater
,
Nat. Mater.
11
,
174
(
2012
).
16.

It should be noted that different arguments to obtain this expression for Js can be found in literature. We adopt the view that the First Law in the form of Eq. (4) determines the relationship between the currents given in Eq. (7).

17.
R.
Brendel
,
S.
Dreissigacker
,
N.-P.
Harder
, and
P. P.
Altermatt
,
Appl. Phys. Lett.
93
,
173503
(
2008
).
18.
J.
Greulich
,
H.
Höffler
,
U.
Würfel
, and
S.
Rein
,
J. Appl. Phys.
114
,
204504
(
2013
).
19.
20.
F. Y.
Wan
,
Introduction to the Calculus of Variations and its Applications
(
Chapman and Hall
,
1995
).
You do not currently have access to this content.