We investigated the nature of transport and magnetic properties in SrIr0.5Ru0.5O3 (SIRO), which has characteristics intermediate between a correlated non-Fermi liquid state and an itinerant Fermi liquid state, by growing perovskite thin films on various substrates (e.g., SrTiO3 (001), (LaAlO3)0.3(Sr2TaAlO6)0.7 (001), and LaAlO3 (001)). We observed systematic variation of underlying substrate dependent metal-to-insulator transition temperatures (TMIT ∼ 80 K on SrTiO3, ∼90 K on (LaAlO3)0.3(Sr2TaAlO6)0.7, and ∼100 K on LaAlO3) in resistivity. At temperature 300 K ≥ T ≥ TMIT, SIRO is metallic and its resistivity follows a T3/2 power law, whereas insulating nature at T < TMIT is due to the localization effect. Magnetoresistance (MR) measurement of SIRO on SrTiO3 (001) shows negative MR at T < 25 K and positive MR at T > 25 K, with negative MR B1/2 and positive MR B2; consistent with the localized-to-normal transport crossover dynamics. Furthermore, observed spin glass like behavior of SIRO on SrTiO3 (001) at T < 25 K in the localized regime validates the hypothesis that (Anderson) localization favors glassy ordering. These remarkable features provide a promising approach for future applications and of fundamental interest in oxide thin films.

1.
J. B.
Goodenough
,
Localized to Itinerant Electronic Transition in Perovskite Oxides
, Springer Series in Structure and Bonding Vol. 98 (
Springer
,
Berlin
,
2001
).
2.
J. B.
Goodenough
and
J.-S.
Zhou
,
Chem. Mater.
10
,
2980
(
1998
).
3.
M.
Imada
,
A.
Fujimori
, and
Y.
Tokura
,
Rev. Mod. Phys.
70
,
1039
(
1998
).
4.
S. J.
Moon
,
H.
Jin
,
K. W.
Kim
,
W. S.
Choi
,
Y. S.
Lee
,
J.
Yu
,
G.
Cao
,
A.
Sumi
,
H.
Funakubo
,
C.
Bernhard
, and
T. W.
Noh
,
Phys. Rev. Lett.
101
,
226402
(
2008
).
5.
B. J.
Kim
,
H.
Ohsumi
,
T.
Komesu
,
S.
Sakai
,
T.
Morita
,
H.
Takagi
, and
T.
Arima
,
Science
323
,
1329
(
2009
).
6.
W. W.
Krempa
,
G.
Chen
,
Y.-B.
Kim
, and
L.
Balents
,
Ann. Rev. Conden. Matter Phys.
5
,
57
(
2014
).
7.
G.
Koster
,
L.
Klein
,
W.
Siemons
,
G.
Rijnders
,
J. S.
Dodge
,
C.-B.
Eom
,
D. H. A.
Blank
, and
M. R.
Beasley
,
Rev. Mod. Phys.
84
,
253
(
2012
) and references therein.
8.
J. G.
Zhao
,
L. X.
Yang
,
Y.
Yu
,
F. Y.
Li
,
R. C.
Yu
,
Z.
Fang
,
L. C.
Chen
, and
C. Q.
Jin
,
J. Appl. Phys.
103
,
103706
(
2008
).
9.
F.-X.
Wu
,
J.
Zhou
,
L. Y.
Zhang
,
Y. B.
Chen
,
S.-T.
Zhang
,
Z.-B.
Gu
,
S.-H.
Yao
, and
Y.-F.
Chen
,
J. Phys.: Condens. Matter
25
,
125604
(
2013
).
10.
A.
Biswas
,
K.-S.
Kim
, and
Y. H.
Jeong
,
J. Appl. Phys.
116
,
213704
(
2014
);
A.
Biswas
and
Y. H.
Jeong
,
J. Phys. D: Appl. Phys.
48
,
135303
(
2015
).
11.
K.
Yamaura
,
D. P.
Young
, and
E.
Takayama-Muromachi
,
Phys. Rev. B
69
,
024410
(
2004
).
12.
H.
Nakatsugawa
,
E.
Iguchi
, and
Y.
Oohara
,
J. Phys.: Condens. Matter
14
,
415
(
2002
).
13.
T.
He
,
Q.
Huang
, and
R. J.
Cava
,
Phys. Rev. B
63
,
024402
(
2000
).
14.
G.
Cao
,
S.
McCall
,
M.
Shepard
,
J. E.
Crow
, and
R. P.
Guertin
,
Phys. Rev. B
56
,
321
(
1997
).
15.
W.
Tong
,
F.-Q.
Huang
, and
I.-W.
Chen
,
J. Phys.: Condens. Matter
23
,
086005
(
2011
).
16.
M.
Bremholm
,
C. K.
Yim
,
D.
Hirai
,
E.
Climent-Pascual
,
Q.
Xu
,
H. W.
Zandbergen
,
M. N.
Ali
, and
R. J.
Cava
,
J. Mater. Chem.
22
,
16431
(
2012
).
17.
I.
Qasim
,
B. J.
Kennedy
, and
M.
Avdeev
,
J. Mater. Chem. A
1
,
3127
(
2013
).
18.
S. Y.
Jang
,
H.
Kim
,
S. J.
Moon
,
W. S.
Choi
,
B. C.
Jeon
,
J.
Yu
, and
T. W.
Noh
,
J. Phys.: Condens. Matter
22
,
485602
(
2010
).
19.
J.
Nichols
,
J.
Terzic
,
E. G.
Bittle
,
O. B.
Korneta
,
L. E.
De Long
,
J. W.
Brill
,
G.
Cao
, and
S. S. A.
Seo
,
Appl. Phys. Lett.
102
,
141908
(
2013
).
20.
A.
Biswas
,
P. B.
Rossen
,
C.-H.
Yang
,
W.
Siemons
,
M.-H.
Jung
,
I. K.
Yang
,
R.
Ramesh
, and
Y. H.
Jeong
,
Appl. Phys. Lett.
98
,
051904
(
2011
).
21.
T.
Ohnishi
,
K.
Takahashi
,
M.
Nakamura
,
M.
Kawasaki
,
M.
Yoshimoto
, and
H.
Koinuma
,
Appl. Phys. Lett.
74
,
2531
(
1999
).
22.
J. M.
Longo
,
J. A.
Kafalas
, and
R. J.
Arnott
,
J. Solid State Chem.
3
,
174
(
1971
).
23.
C. B.
Eom
,
R. J.
Cava
,
R. M.
Fleming
,
J. M.
Phillips
,
R. B.
vanDover
,
J. H.
Marshall
,
J. W. P.
Hsu
,
J. J.
Krajewski
, and
W. F.
Peck
, Jr.
,
Science
258
,
1766
(
1992
).
24.
J. C.
Jiang
and
X. Q.
Pan
,
J. Appl. Phys.
89
,
6365
(
2001
).
25.
J. H.
Gruenewald
,
J.
Nichols
,
J.
Terzic
,
G.
Cao
,
J. W.
Brill
, and
S. S. A.
Seo
,
J. Mater. Res.
29
,
2491
(
2014
).
26.
D. L.
Mills
,
A.
Fert
, and
I. A.
Campbell
,
Phys. Rev. B
4
,
196
(
1971
).
27.
T.
Moriya
,
Spin Fluctuations in Itinerant Electron Magnetism
, Springer Series in Solid State Sciences Vol. 56 (
Springer
,
Berlin
,
1985
).
28.
F.
Rivadulla
,
J. S.
Zhou
, and
J. B.
Goodenough
,
Phys. Rev. B
67
,
165110
(
2003
).
29.
N. F.
Mott
,
Metal-Insulator Transitions
(
Taylor & Francis Ltd.
,
London
,
1974
).
30.
L.
Kouwenhoven
and
L.
Glazman
,
Phys. World
14
,
33
38
(
2001
).
31.
P. A.
Lee
and
T. V.
Ramakrishnan
,
Rev. Mod. Phys.
57
,
287
(
1985
).
32.
X.-H.
Li
,
Y.-H.
Huang
,
Z.-M.
Wang
, and
C.-H.
Yan
,
Appl. Phys. Lett.
81
,
307
(
2002
).
33.
R.
Mahendiran
and
A. K.
Raychaudhuri
,
Phys. Rev. B
54
,
16044
(
1996
).
34.
H.
Li
,
Y.
Xiao
,
B.
Schmitz
,
J.
Persson
,
W.
Schmidt
,
P.
Meuffels
,
G.
Roth
, and
T.
Bruckel
,
Sci. Rep.
2
,
750
(
2012
).
35.
C.-J.
Cheng
,
C.
Lu
,
Z.
Chen
,
L.
You
,
L.
Chen
,
J.
Wang
, and
T.
Wu
,
Appl. Phys. Lett.
98
,
242502
(
2011
).
36.
C. R.
Wiebe
,
J. E.
Greedan
,
G. M.
Luke
, and
J. S.
Gardner
,
Phys. Rev. B
65
,
144413
(
2002
).
37.
R.
Palai
,
H.
Huhtinen
,
J. F.
Scott
, and
R. S.
Katiyar
,
Phys. Rev. B
79
,
104413
(
2009
).
38.
V.
Dobrosavljević
,
D.
Tanaskovic
, and
A. A.
Pastor
,
Phys. Rev. Lett.
90
,
016402
(
2003
).
You do not currently have access to this content.