InxGa1−xN, with the tunable direct bandgaps from ultraviolet to near infrared region, offers a promising candidate for the high-efficiency next-generation thin-film photovoltaic applications. Although the adoption of thick InGaN film as the active region is desirable to obtain efficient light absorption and carrier collection compared to InGaN/GaN quantum wells structure, the understanding on the effect from structural design is still unclear due to the poor-quality InGaN films with thickness and difficulty of p-type doping. In this paper, we comprehensively investigate the effects from film epitaxy, doping, and device structural design on the performances of the InGaN-based solar cells. The high-quality InGaN thick film is obtained on AlN/sapphire template, and p-In0.08Ga0.92N is achieved with a high hole concentration of more than 1018 cm−3. The dependence of the photovoltaic performances on different structures, such as active regions and p-type regions is analyzed with respect to the carrier transport mechanism in the dark and under illumination. The strategy of improving the p-i interface by using a super-thin AlN interlayer is provided, which successfully enhances the performance of the solar cells.

1.
J.
Wu
,
W.
Walukiewicz
,
K. M.
Yu
,
J. W.
Ager
 III
,
E. E.
Haller
,
H.
Lu
,
W. J.
Schaff
,
Y.
Saito
, and
Y.
Nanishi
,
Appl. Phys. Lett.
80
,
3967
(
2002
).
2.
G. F.
Brown
and
J. Q.
Wu
,
Laser Photon. Rev.
3
,
394
(
2009
).
3.
A.
Devos
,
Endoreversible Thermodynamics of Solar Energy Conversion
(
Oxford University Press
,
New York
,
1992
).
4.
J.
Wu
,
J. Appl. Phys.
106
,
011101
(
2009
).
5.
J.
Wu
,
W.
Walukiewicz
,
K. M.
Yu
,
W.
Shan
,
J. W.
Ager
 III
,
E. E.
Haller
,
H.
Lu
,
W. J.
Schaff
,
W. K.
Metzger
, and
S.
Kurtz
,
J. Appl. Phys.
94
,
6477
(
2003
).
6.
L.
Hsu
and
W.
Walukiewicz
,
J. Appl. Phys.
104
,
024507
(
2008
).
7.
L.
Redaelli
,
A.
Mukhtarova
,
S.
Valdueza-Felip
,
A.
Ajay
,
C.
Bougerol
,
C.
Himwas
,
J.
Faure-Vincent
,
C.
Durand
,
J.
Eymery
, and
E.
Monroy
,
Appl. Phys. Lett.
105
,
131105
(
2014
).
8.
N.
Cavassilas
,
F.
Michelini
, and
M.
Bescond
,
Appl. Phys. Lett.
105
,
063903
(
2014
).
9.
O.
Jani
,
I.
Ferguson
,
C.
Honsberg
, and
S.
Kurtz
,
Appl. Phys. Lett.
91
,
132117
(
2007
).
10.
L. W.
Sang
,
M. Y.
Liao
,
N.
Ikeda
,
Y.
Koide
, and
M.
Sumiya
,
Appl. Phys. Lett.
99
,
161109
(
2011
).
11.
L. W.
Sang
,
M. Y.
Liao
,
Y.
Koide
, and
M.
Sumiya
,
Jpn. J. Appl. Phys., Part 1
52
,
08JF04
(
2013
).
12.
Y.
Kuwahara
,
T.
Fujii
,
Y.
Fujiyama
,
T.
Sugiyama
,
M.
Iwaya
,
T.
Takeuchi
,
S.
Kamiyama
,
I.
Akasaki
, and
H.
Amano
,
Appl. Phys. Express
3
,
111001
(
2010
).
13.
X. H.
Zheng
,
R. H.
Horng
,
D. S.
Wuu
,
M.
Tao Chu
,
W. Y.
Liao
,
M. H.
Wu
,
R. M.
Lin
, and
Y. C.
Lu
,
Appl. Phys. Lett.
93
,
261108
(
2008
).
14.
L. W.
Sang
,
M.
Takeguchi
,
W.
Lee
,
Y.
Nakayama
,
M.
Lozac'h
,
T.
Sekiguchi
, and
M.
Sumiya
,
Appl. Phys. Express
3
,
111004
(
2010
).
15.
D. J.
Dumin
and
G. L.
Pearson
,
J. Appl. Phys.
36
,
3418
(
1965
).
16.
J. F.
Muth
,
J. H.
Lee
,
I. K.
Shmagin
,
R. M.
Kolbas
,
H. C.
Casey
, Jr.
,
B. P.
Keller
,
U. K.
Mishra
, and
S. P.
DenBaars
,
Appl. Phys. Lett.
71
,
2572
(
1997
).
17.
M. A.
Green
,
Solar Cells: Operating Principles, Technology, and System Applications
, Prentice-Hallseries in Solid State Physical Electronics (
Prentice-Hall
,
Englewood Cliffs
,
1982
), Chap. 5, pp.
85
102
.
18.
S. M.
Sze
,
Physics of Semiconductor Devices
(
Wiley
,
New York
,
1969
).
19.
E. G.
Brazel
,
M. A.
Chin
, and
V.
Narayanamurti
,
Appl. Phys. Lett.
74
,
2367
(
1999
).
20.
R.
Mahapatra
,
A. K.
Chakraborty
,
N.
Poolamai
,
A.
Horsfall
,
S.
Chattopadhyay
, and
N. G.
Wright
,
J. Vac. Sci. Technol. B
25
(
1
),
217
(
2007
).
21.
M. Y.
Liao
,
X.
Wang
,
T.
Teraji
,
S.
Koizumi
, and
Y.
Koide
,
Phys. Rev. B
81
,
033304
(
2010
).
22.
K.
Yang
,
J. R.
East
, and
G. I.
Haddad
,
Solid-State Electron.
36
,
321
(
1993
).
You do not currently have access to this content.