The internal quantum efficiency (IQE) in a GaN epilayer is quantified using transient lens (TL) spectroscopy and numerical simulations. TL spectroscopy can optically detect temperature and carrier changes induced in a photo-pumped GaN layer, and the observed temperature change is closely associated with non-radiative recombination processes that create heat. Then numerically solving diffusion equations, which represent the diffusion processes of the photo-generated heat and carriers, provide the spatiotemporal distributions. These distributions are subsequently converted into the refractive index distributions, which act as transient convex or concave lenses. Finally, ray-tracing simulations predict the TL signals. Comparing the experimentally obtained and simulated TL signals quantifies the generated heat and the IQE without the often-adopted assumption that non-radiative recombination processes are negligible at low temperatures.

1.
R. C.
Miller
,
D. A.
Kleinman
,
W. A.
Nordland
, Jr.
, and
A. C.
Gossard
,
Phys. Rev. B
22
,
863
(
1980
).
2.
Y.
Narukawa
,
Y.
Kawakami
,
S.
Fujita
, and
S.
Nakamura
,
Phys. Rev. B
59
,
10283
(
1999
).
3.
S.
Watanabe
,
N.
Yamada
,
M.
Nagashima
,
Y.
Ueki
,
C.
Sasaki
,
Y.
Yamada
,
T.
Taguchi
,
K.
Tadatomo
,
H.
Okagawa
, and
H.
Kudo
,
Appl. Phys. Lett.
83
,
4906
(
2003
).
4.
T.
Kohno
,
Y.
Sudo
,
M.
Yamauchi
,
K.
Mitsui
,
H.
Kudo
,
H.
Okagawa
, and
Y.
Yamada
,
Jpn. J. Appl. Phys., Part 1
51
,
072102
(
2012
).
5.
Y.
Iwata
,
R. G.
Banal
,
S.
Ichikawa
,
M.
Funato
, and
Y.
Kawakami
,
J. Appl. Phys.
117
,
075701
(
2015
).
6.
M.
Terazima
,
N.
Hirota
,
S. E.
Braslavski
,
A.
Mandelis
,
S. E.
Bialkowski
,
G. J.
Diebold
,
R. J. D.
Miller
,
D.
Fournier
,
R. A.
Palmer
, and
A.
Tam
,
Pure Appl. Chem.
76
,
1083
(
2004
).
7.
K.
Okamoto
,
A.
Kaneta
,
K.
Inoue
,
Y.
Kawakami
,
M.
Terzima
,
G.
Shinomiya
,
T.
Mukai
, and
S.
Fujita
,
Phys. Status Solidi B
228
,
81
(
2001
).
8.
K.
Okamoto
,
K.
Inoue
,
Y.
Kawakami
,
S.
Fujita
,
M.
Terzima
,
A.
Tsujimura
, and
I.
Kioguchi
,
Rev. Sci. Instrum.
74
,
575
(
2003
).
9.
K.
Okamoto
,
A.
Scherer
, and
Y.
Kawakami
,
Appl. Phys. Lett.
87
,
161104
(
2005
).
10.
E.
Vanagas
,
J.
Moniatte
,
M.
Mazilu
,
P.
Riblet
,
B.
Hönerlage
,
S.
Juodkazis
,
F.
Paille
,
J. C.
Plenet
,
J. G.
Dumas
,
M.
Petrausks
, and
J.
Vaitkus
,
J. Appl. Phys.
81
,
3586
(
1997
).
11.
H.
Haag
,
B.
Hönerlage
,
O.
Broit
, and
R. L.
Aulombard
,
Phys. Rev. B
60
,
11624
(
1999
).
12.
S. M.
Olaizola
,
W. H.
Fan
,
S. A.
Hashemizadeh
,
J.-P. R.
Wells
,
D. J.
Mowbray
,
M. S.
Skolnick
,
A. M.
Fox
, and
P. J.
Parbrook
,
Appl. Phys. Lett.
89
,
072107
(
2006
).
13.
J. F.
Muth
,
J. H.
Lee
,
I. K.
Shmagin
,
R. M.
Kolbas
,
H. C.
Casey
, Jr.
,
B. P.
Keller
,
U. K.
Mishra
, and
S. P.
DenBaars
,
Appl. Phys. Lett.
71
,
2572
(
1997
).
14.
A.
Yariv
,
Introduction to Optical Electronics
, 3rd ed. (
Holt, Rinehart and Winston, Inc.
,
New York
,
1971
).
15.
∂n/∂N for GaN was calculated using the method described in
B. R.
Bennett
,
R. A.
Soref
, and
J. A.
Del Alamo
,
IEEE J. Quantum Electron.
26
,
113
(
1990
).
16.
E.
Ejder
,
Phys. Status Solidi A
6
,
445
(
1971
).
17.
K. P.
Birch
and
M. J.
Downs
,
Metrologia
30
,
155
(
1993
).
18.
M.
Sanati
and
S. K.
Estreicher
,
J. Phys.: Condens. Matter.
16
,
L327
(
2004
).
19.
S.
Nakamura
,
T.
Mukai
, and
M.
Senoh
,
J. Appl. Phys.
76
,
8189
(
1994
).
20.
Y. C.
Shen
,
G. O.
Mueller
,
S.
Watanabe
,
N. F.
Gardner
,
A.
Munkholm
, and
M. R.
Krames
,
Appl. Phys. Lett.
91
,
141101
(
2007
).
21.
Q.
Dai
,
M. F.
Sshubert
,
M. H.
Kim
,
J. K.
Kim
,
E. F.
Schubert
,
D. D.
Koleske
,
M. H.
Crawford
,
S. R.
Lee
,
A. J.
Fischer
,
G.
Thaler
, and
M. A.
Banas
,
Appl. Phys. Lett.
94
,
111109
(
2009
).
You do not currently have access to this content.