In this study 2d two phase microstructures closely resembling the experimentally captured micrographs of the interpenetrating phase composites are generated using a Gaussian correlation function based method. The scale dependent bounds on the effective thermal conductivity of such microstructures are then studied using Hill-Mandel boundary conditions. A scaling function is formulated to describe the transition from statistical volume element (SVE) to representative volume element (RVE), as a function of the mesoscale δ, the correlation length of the Gaussian correlation function λ, the volume fraction v, and the contrast k between the phases. The scaling function is determined through fitting the data from extensive simulations conducted over the parameter space. The scaling function shows that SVE approaches RVE as (δ/λ)1.16. A material scaling diagram allows estimation of the RVE size, to within a chosen accuracy, of a given microstructure characterized by the correlation length of the Gaussian correlation function, contrast, and volume fraction of the phases.

1.
2.
M.
Ostoja-Starzewski
,
Microstructural Randomness and Scaling in Mechanics of Materials
(
CRC Press
,
2008
).
3.
G. W.
Milton
,
The Theory of Composites
(
Cambridge University Press
,
2002
), Vol.
6
.
4.
T.
Mura
,
Micromechanics of Defects in Solids
(
Springer Science & Business Media
,
1987
), Vol.
3
.
5.
R.
Hill
,
J. Mech. Phys. Solids
11
,
357
(
1963
).
6.
M.
Ostoja-Starzewski
and
J.
Schulte
,
Phys. Rev. B
54
,
278
(
1996
).
7.
A. S.
Dalaq
,
S. I.
Ranganathan
, and
M.
Ostoja-Starzewski
,
Comput. Mater. Sci.
79
,
252
(
2013
).
8.
M.
Ostoja-Starzewski
,
Phys. Rev. B
62
,
2980
(
2000
).
9.
B. V.
Raghavan
and
S. I.
Ranganathan
,
Acta Mech.
225
,
3007
(
2014
).
10.
K.
Sab
,
Eur. J. Mech. A Solids
11
,
585
(
1992
).
11.
S. S.
Vel
and
A. J.
Goupee
,
Comput. Mater. Sci.
48
,
22
(
2010
).
12.
E.
Porcu
and
M. L.
Stein
, in
Advances and Challenges in Space-Time Modelling of Natural Events
, edited by
E.
Porcu
,
J. M.
Montero
, and
M.
Schlather
(
Springer
,
2012
), pp.
221
238
.
13.
D.
Aldrich
,
Z.
Fan
, and
P.
Mummery
,
Mater. Sci. Technol.
16
,
747
(
2000
).
14.
G.
Jin
,
M.
Takeuchi
,
S.
Honda
,
T.
Nishikawa
, and
H.
Awaji
,
Mater. Chem. Phys.
89
,
238
(
2005
).
15.
S. I.
Ranganathan
and
M.
Ostoja-Starzewski
,
Phys. Rev. B
77
,
214308
(
2008
).
16.
S. I.
Ranganathan
and
M.
Ostoja-Starzewski
,
Int. J. Eng. Sci.
47
,
1322
(
2009
).
17.
H. A.
Makse
,
S.
Havlin
,
M.
Schwartz
, and
H. E.
Stanley
,
Phys. Rev. E
53
,
5445
(
1996
).
18.
S.
Prager
,
Phys. Fluids
4
,
1477
(
1961
).
19.
Abaqus Documentation 6.13.2
(
Dassault Systémes Simulia Corp.
,
Providence, RI
,
2013
).
20.
22.
J.
Helsing
,
J. Comput. Phys.
230
,
7533
(
2011
).
23.
C. S.
Olariu
,
S.
Lasquellec
, and
C.
Brosseau
,
J. Appl. Phys.
114
,
074104
(
2013
).
24.
Z.
Hashin
and
S.
Shtrikman
,
J. Appl. Phys.
33
,
3125
(
1962
).
You do not currently have access to this content.