The dielectric functions of co-evaporated Cu2ZnSnSe4 (CZTSe) and Cu2SnSe3 (CTSe) polycrystalline layers are determined accurately from self-consistent spectroscopic ellipsometry analyses. To minimize the effects of the compositional modulation and light scattering induced by rough surfaces, quite thin CZTSe and CTSe layers (<50 nm) having the single-phase stoichiometric compositions are characterized. The dielectric functions of CZTSe and CTSe show rather similar spectral features with almost identical critical point energies for the transition peaks at 2.4 and 3.9 eV. The CTSe dielectric function, however, indicates strong free carrier absorption, expressed by the Drude model, due to high p-type conductivity in the layer. We find that CZTSe and CTSe show quite large absorption coefficients exceeding 105 cm−1 at 2.0 eV with band gap values of 0.91 ± 0.02 eV and 0.68 ± 0.05 eV, respectively. To characterize the optical transition in CZTSe in more detail, the dielectric response of each interband transition is calculated by applying density functional theory. The calculation result reveals that the strong visible light absorption in CZTSe is induced by the high joint density of states at the P point in the Brillouin zone. The optical constants of CZTSe and CTSe deduced in this study are further parameterized in an energy range up to 6.0 eV by expressing the transition peaks using the Tauc-Lorentz model. From the above results, we discuss the fundamental optical properties of (Cu,Se)-based compound semiconductors.

1.
Handbook of Photovoltaic Science and Engineering
, 2nd ed., edited by
A.
Luque
and
S.
Hegedus
(
Wiley, West Sussex
,
UK
,
2011
).
2.
T.
Hara
,
T.
Maekawa
,
S.
Minoura
,
Y.
Sago
,
S.
Niki
, and
H.
Fujiwara
,
Phys. Rev. Appl.
2
,
034012
(
2014
).
3.
I.
Repins
,
C.
Beall
,
N.
Vora
,
C.
DeHart
,
D.
Kuciauskas
,
P.
Dippo
,
B.
To
,
J.
Mann
,
W.
Hsu
,
A.
Goodrich
, and
R.
Noufi
,
Sol. Eng. Mater. Sol. Cells
101
,
154
(
2012
).
4.
G.
Zoppi
,
I.
Forbes
,
R. W.
Miles
,
P. J.
Dale
,
J. J.
Scragg
, and
L. M.
Peter
,
Prog. Photovoltaics
17
,
315
(
2009
).
5.
T. K.
Todorov
,
K. B.
Reuter
, and
D. B.
Mitzi
,
Adv. Mater.
22
,
E156
(
2010
).
6.
I. L.
Repins
,
H.
Moutinho
,
S. G.
Choi
,
A.
Kanevce
,
D.
Kuciauskas
,
P.
Dippo
,
C. L.
Beall
,
J.
Carapella
,
C.
DeHart
,
B.
Huang
, and
S. H.
Wei
,
J. Appl. Phys.
114
,
084507
(
2013
).
7.
G.
Brammertz
,
M.
Buffiere
,
S.
Oueslati
,
H.
ElAnzeery
,
K. B.
Messaoud
,
S.
Sahayaraj
,
C.
Koble
,
M.
Meuris
, and
J.
Poortmans
,
Appl. Phys. Lett.
103
,
163904
(
2013
).
8.
A.
Redinger
,
M.
Mousel
,
M. H.
Wolter
,
N.
Valle
, and
S.
Siebentritt
,
Thin Solid Films
535
,
291
(
2013
).
9.
H.
Tampo
,
K.
Makita
,
H.
Komaki
,
A.
Yamada
,
S.
Furue
,
S.
Ishizuka
,
H.
Shibata
,
K.
Matsubara
, and
S.
Niki
,
Thin Solid Films
551
,
27
(
2014
).
10.
G. S.
Babu
,
Y. B. K.
Kumar
,
P. U.
Bhaskar
, and
V. S.
Raja
,
Semicond. Sci. Technol.
23
,
085023
(
2008
).
11.
M.
Altosaar
,
J.
Raudoja
,
K.
Timmo
,
M.
Danilson
,
M.
Grossberg
,
J.
Krustok
, and
E.
Mellikov
,
Phys. Status Solidi A
205
,
167
(
2008
).
12.
S.
Ahn
,
S.
Jung
,
J.
Gwak
,
A.
Cho
,
K.
Shin
,
K.
Yoon
,
D.
Park
,
H.
Cheong
, and
J. H.
Yun
,
Appl. Phys. Lett.
97
,
021905
(
2010
).
13.
K.
Kim
and
I.
Amal
,
Electron. Mater. Lett.
7
,
225
(
2011
).
14.
D.
Park
,
D.
Nam
,
S.
Jung
,
S.
An
,
J.
Gwak
,
K.
Yoon
,
J. H.
Yun
, and
H.
Cheong
,
Thin Solid Films
519
,
7386
(
2011
).
15.
F.
Luckert
,
D. I.
Hamilton
,
M. V.
Yakushev
,
N. S.
Beattie
,
G.
Zoppi
,
M.
Moynihan
,
I.
Forbes
,
A. V.
Karotki
,
A. V.
Mudryi
,
M.
Grossberg
,
J.
Krustok
, and
R. W.
Martin
,
Appl. Phys. Lett.
99
,
062104
(
2011
).
16.
M. I.
Amal
and
K. H.
Kim
,
Chalcogen. Lett.
9
,
345
(
2012
).
17.
J.
He
,
L.
Sun
,
S.
Chen
,
Y.
Chen
,
P.
Yang
, and
J.
Chu
,
J. Alloys Compd.
511
,
129
(
2012
).
18.
F.
Gao
,
S.
Yamazoe
,
T.
Maeda
,
K.
Nakanishi
, and
T.
Wada
,
Jpn. J. Appl. Phys., Part 1
51
,
10NC29
(
2012
).
19.
M.
Grossberg
,
J.
Krustok
,
J.
Raudoja
,
K.
Timmo
,
M.
Altosaar
, and
T.
Raadik
,
Thin Solid Films
519
,
7403
(
2011
).
20.
A.
Redinger
,
K.
Hones
,
X.
Fontane
,
V.
Izquierdo-Roca
,
E.
Saucedo
,
N.
Valle
,
A.
Perez-Rodriguez
, and
S.
Siebentritt
,
Appl. Phys. Lett.
98
,
101907
(
2011
).
21.
S.
Schorr
,
Sol. Energy Mater. Sol. Cells
95
,
1482
(
2011
).
22.
C.
Persson
,
J. Appl. Phys.
107
,
053710
(
2010
).
23.
H.
Zhao
and
C.
Persson
,
Thin Solid Films
519
,
7508
(
2011
).
24.
Y.
Zhang
,
X.
Yuan
,
X.
Sun
,
B.
Shih
,
P.
Zhang
, and
W.
Zhang
,
Phys. Rev. B
84
,
075127
(
2011
).
25.
S. G.
Choi
,
H. Y.
Zhao
,
C.
Persson
,
C. L.
Perkins
,
A. L.
Donohue
,
B.
To
,
A. G.
Norman
,
J.
Li
, and
L.
Repins
,
J. Appl. Phys.
111
,
033506
(
2012
).
26.
S.
Botti
,
D.
Kammerlander
, and
M. A. L.
Marques
,
Appl. Phys. Lett.
98
,
241915
(
2011
).
27.
S.
Chen
,
A.
Walsh
,
J.
Yang
,
X. G.
Gong
,
L.
Sun
,
P.
Yang
,
J.
Chu
, and
S.
Wei
,
Phys. Rev. B
83
,
125201
(
2011
).
28.
S.
Chen
,
L.
Wang
,
A.
Walsh
,
X. G.
Gong
, and
S.
Wei
,
Appl. Phys. Lett.
101
,
223901
(
2012
).
29.
N. B. M.
Amiri
and
A.
Postnikov
,
Phys. Rev. B
82
,
205204
(
2010
).
30.
T.
Gurel
,
C.
Sevik
, and
T.
Cagin
,
Phys. Rev. B
84
,
205201
(
2011
).
31.
N. B. M.
Amiri
and
A.
Postnikov
,
J. Appl. Phys.
112
,
033719
(
2012
).
32.
S. G.
Choi
,
R.
Chen
,
C.
Persson
,
T. J.
Kim
,
S. Y.
Hwang
,
Y. D.
Kim
, and
L. M.
Mansfield
,
Appl. Phys. Lett.
101
,
261903
(
2012
).
33.
S.
Minoura
,
K.
Kodera
,
T.
Maekawa
,
K.
Miyazaki
,
S.
Niki
, and
H.
Fujiwara
,
J. Appl. Phys.
113
,
063505
(
2013
).
34.
G.
Marcano
,
C.
Rincon
,
L. M.
de Chalbaud
,
D. B.
Bracho
, and
G. S.
Perez
,
J. Appl. Phys.
90
,
1847
(
2001
).
35.
G. S.
Babu
,
Y. B. K.
Kumar
,
Y. B. K.
Reddy
, and
V. S.
Raja
,
Mater. Chem. Phys.
96
,
442
(
2006
).
36.
D.
Kuo
,
W.
Haung
,
Y.
Huang
,
J.
Wu
, and
Y.
Lin
,
Thin Solid Films
518
,
7218
(
2010
).
37.
P. U.
Bhaskar
,
G. S.
Babu
,
Y. B. K.
Kumar
, and
V. S.
Raja
,
Appl. Surf. Sci.
257
,
8529
(
2011
).
38.
K. M.
Kim
,
H.
Tampo
,
H.
Shibata
, and
S.
Niki
,
Thin Solid Films
536
,
111
(
2013
).
39.
K. M.
Kim
,
H.
Tampo
,
H.
Shibata
, and
S.
Niki
,
Mater. Lett.
116
,
61
(
2014
).
40.
G.
Gurieva
,
S.
Levcenko
,
S.
Schorr
,
M.
Leon
,
R.
Serna
,
A.
Nateprov
, and
E.
Arushanov
,
Thin Solid Films
535
,
384
(
2013
).
41.
H.
Fujiwara
,
J.
Koh
,
P. I.
Rovira
, and
R. W.
Collins
,
Phys. Rev. B
61
,
10832
(
2000
).
42.
H.
Fujiwara
,
Spectroscopic Ellipsometry: Principles and Applications
(
Wiley
,
West Sussex
,
2007
).
43.
H.
Fujiwara
and
M.
Kondo
,
Phys. Rev. B
71
,
075109
(
2005
).
44.
D. E.
Aspnes
,
Phys. Rev. B
25
,
1358
(
1982
).
45.
D. E.
Aspnes
,
Thin Solid Films
89
,
249
(
1982
).
46.
G. E.
Delgado
,
A. J.
Mora
,
G.
Marcano
, and
C.
Rincon
,
Mater. Res. Bull.
38
,
1949
(
2003
).
47.
Y.
Zhai
,
S.
Chen
,
J.
Yang
,
H.
Xiang
,
X.
Gong
,
A.
Walsh
,
J.
Kang
, and
S.
Wei
,
Phys. Rev. B
84
,
075213
(
2011
).
48.
D.
Vanderbilt
,
Phys. Rev. B
41
,
7892
(
1990
).
49.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
50.
J.
Hafner
,
J. Comput. Chem.
29
,
2044
(
2008
).
51.
J.
Paier
,
R.
Asahi
,
A.
Nagoya
, and
G.
Kresse
,
Phys. Rev. B
79
,
115126
(
2009
).
52.
R. W.
Godby
,
M.
Schluter
, and
L. J.
Sham
,
Phys. Rev. B
37
,
10159
(
1988
).
53.
H.
Kageshima
and
K.
Shiraishi
,
Phys. Rev. B
56
,
14985
(
1997
).
54.
C.
Ambrosch-Draxl
and
J. O.
Sofo
,
Comput. Phys. Commun.
175
,
1
(
2006
).
55.
M. P.
Marder
,
Condensed Matter Physics
(
Wiley
,
Hoboken
,
2010
).
56.
G.
Marcano
,
C.
Rincon
,
S. A.
Lopez
,
G. S.
Perez
,
J. L.
Herrera-Perez
,
J. G.
Mendoza-Alvarez
, and
P.
Rodriguez
,
Solid State Commun.
151
,
84
(
2011
).
57.
W.
Witte
,
R.
Kniese
, and
M.
Powalla
,
Thin Solid Films
517
,
867
(
2008
).
58.
C. M.
Herzinger
,
B.
Johs
,
W. A.
McGahan
,
J. A.
Woollam
, and
W.
Paulson
,
J. Appl. Phys.
83
,
3323
(
1998
).
59.
G. E.
Jellison
,
Jr
.,
Appl. Opt.
30
,
3354
(
1991
).
60.
H.
Fujiwara
,
M.
Kondo
, and
A.
Matsuda
,
Phys. Rev. B
63
,
115306
(
2001
).
61.
M.
Akagawa
and
H.
Fujiwara
,
J. Appl. Phys.
110
,
073518
(
2011
).
62.
J. E.
Jaffe
and
A.
Zunger
,
Phys. Rev. B
28
,
5822
(
1983
).
63.
J. E.
Jaffe
and
A.
Zunger
,
Phys. Rev. B
29
,
1882
(
1984
).
64.
B. E.
Sernelius
,
K. F.
Berggren
,
Z. C.
Jin
,
I.
Hamberg
, and
C. G.
Granqvist
,
Phys. Rev. B
37
,
10244
(
1988
).
65.
A.
Walsh
,
J. L. F.
Da Silva
, and
S.
Wei
,
Phys. Rev. B
78
,
075211
(
2008
).
66.
P.
Lautenschlager
,
M.
Garriga
,
L.
Vina
, and
M.
Cardona
,
Phys. Rev. B
36
,
4821
(
1987
).
67.
G. E.
Jellison
,Jr.
and
F. A.
Modine
,
Appl. Phys. Lett.
69
,
371
(
1996
);
G. E.
Jellison
, Jr.
and
F. A.
Modine
, “
Erratum
,”
Appl. Phys. Lett.
69
,
2137
(
1996
).
68.
M.
Erman
,
J. B.
Theeten
,
P.
Chambon
,
S. M.
Kelso
, and
D. E.
Aspnes
,
J. Appl. Phys.
56
,
2664
(
1984
).
69.
70.
B.
Johs
,
C. M.
Herzinger
,
J. H.
Dinan
,
A.
Cornfeld
, and
J. D.
Benson
,
Thin Solid Films
313–314
,
137
(
1998
).
71.
T.
Yuguchi
,
Y.
Kanie
,
N.
Matsuki
, and
H.
Fujiwara
,
J. Appl. Phys.
111
,
083509
(
2012
).
72.
L. M.
de Chalbaud
,
G.
Diaz de Delgado
, and
J. M.
Delgado
,
Mater. Res. Bull.
32
,
1371
(
1997
).
73.
M.
Onoda
,
X.
Chen
,
A.
Sato
, and
H.
Wada
,
Mater. Res. Bull.
35
,
1563
(
2000
).
74.
W.
Wang
,
M. T.
Winkler
,
O.
Gunawan
,
T.
Gokmen
,
T. K.
Todorov
,
Y.
Zhu
, and
D. B.
Mitzi
,
Adv. Energy Mater.
4
,
1301465
(
2014
).
You do not currently have access to this content.