The crystallization of amorphous semiconductors is a strongly exothermic process. Once initiated the release of latent heat can be sufficient to drive a self-sustaining crystallization front through the material in a manner that has been described as explosive. Here, we perform a quantitative in situ study of explosive crystallization in amorphous germanium using dynamic transmission electron microscopy. Direct observations of the speed of the explosive crystallization front as it evolves along a laser-imprinted temperature gradient are used to experimentally determine the complete interface response function (i.e., the temperature-dependent front propagation speed) for this process, which reaches a peak of 16 m/s. Fitting to the Frenkel-Wilson kinetic law demonstrates that the diffusivity of the material locally/immediately in advance of the explosive crystallization front is inconsistent with those of a liquid phase. This result suggests a modification to the liquid-mediated mechanism commonly used to describe this process that replaces the phase change at the leading amorphous-liquid interface with a change in bonding character (from covalent to metallic) occurring in the hot amorphous material.

1.
R.
Pillarisetty
,
Nature
479
,
324
328
(
2011
).
2.
D.
Crisp
,
A.
Pathare
, and
R. C.
Ewell
,
Acta Astronautica
54
,
83
101
(
2004
).
3.
W.
Guter
,
J.
Schoüne
,
S. P.
Philipps
,
M.
Steiner
,
G.
Siefer
,
A.
Wekkeli
,
E.
Welser
,
E.
Oliva
,
A. W.
Bett
, and
F.
Dimroth
,
Appl. Phys. Lett.
94
,
223504
(
2009
).
4.
R.
Kaufmann
,
G.
Isella
,
A.
Sanchez-Amores
,
S.
Neukom
,
A.
Neels
,
L.
Neumann
,
A.
Brenzikofer
,
A.
Dommann
,
C.
Urban
, and
H.
von Kaünel
,
J. Appl. Phys.
110
,
023107
(
2011
).
5.
L.
Tang
,
S. E.
Kocabas
,
S.
Latif
,
A. K.
Okyay
,
D.-S.
Ly-Gagnon
,
K. C.
Saraswat
, and
D. A. B.
Miller
,
Nat. Photonics
2
,
226
229
(
2008
).
6.
S. C.
Martin
,
L. M.
Hitt
, and
J. J.
Rosenberg
,
IEEE Electron Device Lett.
10
,
325
326
(
1989
).
7.
L.
Gomez
,
C. Ni
Chléirigh
,
P.
Hashemi
, and
J. L.
Hoyt
,
IEEE Electron Device Lett.
31
,
782
784
(
2010
).
8.
N.
Misra
,
L.
Xu
,
M. S.
Rogers
,
S. H.
Ko
, and
C. P.
Grigoropoulos
,
Phys. Status Solidi C
5
,
3264
3270
(
2008
).
9.
W.
Yeh
,
H.
Chen
,
H.
Huang
,
C.
Hsiao
, and
J.
Jeng
,
Appl. Phys. Lett.
93
,
094103
(
2008
).
10.
O.
Salihoglu
,
U.
Kuüruüm
,
H. Gul
Yaglioglu
,
A.
Elmali
, and
A.
Aydinli
,
J. Appl. Phys.
109
,
123108
(
2011
).
11.
T.
Irisawa
,
H.
Miura
,
T.
Ueno
, and
Y.
Shiraki
,
Jpn. J. Appl. Phys., Part 1
40
,
2694
2696
(
2001
).
12.
S. J.
Koester
,
R.
Hammond
, and
J. O.
Chu
,
IEEE Electron Device Lett.
21
,
110
112
(
2000
).
13.
R. K.
Sharma
,
S. K.
Bansal
,
R.
Nath
,
R. M.
Mehra
,
K.
Bahadur
,
R. P.
Mall
,
K. L.
Chaudhary
, and
C. L.
Garg
,
J. Appl. Phys.
55
,
387
(
1984
).
14.
O.
Bostanjoglo
,
R. P.
Tornow
, and
W.
Tornow
,
Ultramicroscopy
21
,
367
372
(
1987
).
15.
L.
Nikolova
,
T.
LaGrange
,
M. J.
Stern
,
J. M.
MacLeod
,
B. W.
Reed
,
H.
Ibrahim
,
G. H.
Campbell
,
F.
Rosei
, and
B. J.
Siwick
,
Phys. Rev. B
87
,
064105
(
2013
).
16.
H. S.
Chen
,
J. Appl. Phys.
40
,
4214
(
1969
).
17.
E. A.
Brandes
,
Smithells Metals Reference Book
, 6th ed. (
Butterworths
,
1983
).
18.
T.
Takamori
,
R.
Messier
, and
R.
Roy
,
J. Mater. Sci.
8
,
1809
1816
(
1973
).
19.
H.-D.
Geiler
,
E.
Glaser
,
G.
Goütz
, and
M.
Wagner
,
J. Appl. Phys.
59
,
3091
(
1986
).
20.
W. C.
Sinke
,
A.
Polman
,
S.
Roorda
, and
P. A.
Stolk
,
Appl. Surf. Sci.
43
,
128
135
(
1989
).
21.
A.
Chojnacka
, Ph.D. thesis,
Cornell University
,
2002
.
22.
P. A.
Stolk
,
A.
Polman
, and
W. C.
Sinke
,
Phys. Rev. B
47
(
1
),
5
13
(
1993
).
23.
M.
Thompson
,
G.
Galvin
,
J.
Mayer
,
P.
Peercy
,
J.
Poate
,
D.
Jacobson
,
A.
Cullis
, and
N.
Chew
,
Phys. Rev. Lett.
52
(
26
),
2360
2363
(
1984
).
24.
M.
Posselt
and
A.
Gabriel
,
Phys. Rev. B
80
,
045202
(
2009
).
25.
H. J.
Leamy
,
Appl. Phys. Lett.
38
,
137
(
1981
).
26.
E. P.
Donovan
,
F.
Spaepen
,
D.
Turnbull
,
J. M.
Poate
, and
D. C.
Jacobson
,
J. Appl. Phys.
57
,
1795
(
1985
).
27.
L.
Nikolova
,
T.
LaGrange
,
B. W.
Reed
,
M. J.
Stern
,
N. D.
Browning
,
G. H.
Campbell
,
J.-C.
Kieffer
,
B. J.
Siwick
, and
F.
Rosei
,
Appl. Phys. Lett.
97
,
203102
(
2010
).
28.
W. E.
King
,
G. H.
Campbell
,
A.
Frank
,
B.
Reed
,
J. F.
Schmerge
,
B. J.
Siwick
,
B. C.
Stuart
, and
P. M.
Weber
,
J. Appl. Phys.
97
,
111101
(
2005
).
29.
B. W.
Reed
,
M. R.
Armstrong
,
N. D.
Browning
,
G. H.
Campbell
,
J. E.
Evans
,
T.
LaGrange
, and
D. J.
Masiel
,
Microsc. Microanal.
15
,
272
281
(
2009
).
30.
T.
LaGrange
,
B. W.
Reed
,
M. K.
Santala
,
J. T.
McKeown
,
A.
Kulovits
,
J. M. K.
Wiezorek
,
L.
Nikolova
,
F.
Rosei
,
B. J.
Siwick
, and
G. H.
Campbell
,
Micron
43
,
1108
1120
(
2012
).
31.
J. Y.
Tsao
,
P. S.
Peercy
, and
M. O.
Thompson
,
J. Mater. Res.
2
,
91
95
(
2011
).
32.
B. C.
Larson
,
J. Z.
Tischler
, and
D. M.
Mills
,
J. Mater. Res.
1
,
144
154
(
2011
).
33.
T.
LaGrange
,
G. H.
Campbell
,
B. W.
Reed
,
M.
Taheri
,
J. B.
Pesavento
,
J. S.
Kim
, and
N. D.
Browning
,
Ultramicroscopy
108
,
1441
1449
(
2008
).
34.
M. V.
Allmen
,
Laser-Beam Interactions with Materials: Physical Principles and Applications
, Springer Series in Materials Science, (
Springer-Verlag
,
1987
).
35.
M.
Mulato
,
D.
Toet
,
G.
Aichmayr
,
P. V.
Santos
, and
I.
Chambouleyron
,
Appl. Phys. Lett.
70
,
3570
3572
(
1997
).
36.
G.
Badertscher
,
R. P.
Salathé
, and
H. P.
Weber
,
Appl. Phys.
25
,
91
93
(
1981
).
37.
O.
Bostanjoglo
and
E.
Endruschat
,
Phys. Status Solidi A
91
,
17
28
(
1985
).
38.
R.
Messier
,
T.
Takamori
, and
R.
Roy
,
Solid State Commun.
16
,
311
314
(
1975
).
39.
Y. S.
Touloukian
and
E. H.
Buyco
, in
Specific Heat—Metallic Elements and Alloys
, edited by
Y. S.
Touloukian
and
C. Y.
Ho
(
IFI/Plenum Data Corporation
,
1970
), Vol. 4, pp.
79
82
.
40.
A.
Chojnacka
and
M. O.
Thompson
,
MRS Proc.
648
,
11
12
(
2011
).
41.
L.
Csepregi
,
R. P.
Küllen
,
J. W.
Mayer
, and
T. W.
Sigmon
,
Solid State Commun.
21
,
1019
1021
(
1977
).
42.
J. S.
Langer
,
Rev. Mod. Phys.
52
,
1
28
(
1980
).
43.
G. H.
Gilmer
and
H. J.
Leamy
, in
Laser Electron Beam Processing of Materials
, edited by
C. W.
White
and
P. S.
Peercy
(
Academic Press
,
1980
), pp.
227
233
.
44.
E.
Albenze
,
M.
Thompson
, and
P.
Clancy
,
Phys. Rev. B
70
,
1
10
(
2004
).
45.
C.
Grigoropoulos
,
M.
Rogers
,
S.
Ko
,
A.
Golovin
, and
B.
Matkowsky
,
Phys. Rev. B
73
,
184125
(
2006
).
46.
J.
Tsao
,
M.
Aziz
,
M.
Thompson
, and
P.
Peercy
,
Phys. Rev. Lett.
56
,
2712
2715
(
1986
).
47.

The temperature plotted in Fig. 7 is the crystallization front temperature that we extract from the lumped interface modeling one gridpoint in advance of the delta-function source. The horizontal/temperature error bars on the points in Fig. 7 represent our best estimate of the way that the uncertainty in the time-dependent position of the delta-function source (the uncertainties associated with the data in Fig. 3) propagates through the modeling into c-l front temperature. This was determined by computing the time-dependent temperature field (with the model described above) with the range of source trajectories that is consistent with the data in Fig. 3 in a monte-carlo like manner.

48.
C. P.
Grigoropoulos
,
Transport in Laser Microfabrication: Fundamentals and Application
(
Cambridge University Press
,
2009
).
49.
E.
Huüger
,
U.
Tietze
,
D.
Lott
,
H.
Bracht
,
D.
Bougeard
,
E. E.
Haller
, and
H.
Schmidt
,
Appl. Phys. Lett.
93
,
162104
(
2008
).
50.
S. M.
Chathoth
,
B.
Damaschke
,
T.
Unruh
, and
K.
Samwer
,
Appl. Phys. Lett.
94
,
221906
(
2009
).
51.
C.
Kittel
,
Introduction to Solid State Physics
(
Wiley
,
New York
,
1966
).
52.
V. V.
Levitin
,
Atom Vibrations in Solids: Amplitudes and Frequencies
(
Cambridge Scientific Publishers
,
2004
).
53.
B. J.
Siwick
,
J. R.
Dwyer
,
R. E.
Jordan
, and
R. J. D.
Miller
,
Science
302
,
1382
1385
(
2003
).
54.
G.
Sciaini
and
R. J. D.
Miller
,
Rep. Prog. Phys.
74
(
9
),
096101
(
2011
).
55.
M. R.
Armstrong
,
B. W.
Reed
,
B. R.
Torralva
, and
N. D.
Browning
,
Appl. Phys. Lett.
90
(
11
),
114101
(
2007
).
56.
B. J.
Siwick
,
J. R.
Dwyer
,
R. E.
Jordan
, and
R. J. D.
Miller
,
Chem. Phys.
299
,
285
305
(
2004
).
57.
A. M. M.
Abeykoon
,
C. D.
Malliakas
,
P.
Juhás
,
E. S.
Bozin
,
M. G.
Kanatzidis
, and
S. J. L.
Billinge
,
Zeitsch. Kristallogr.
227
(
5
),
248
256
(
2012
).
You do not currently have access to this content.