To elucidate the relationship between the structure and the electrical characteristics of diamond-like carbon (DLC) films, DLC films were synthesized in a well-controlled glow discharge with the aid of photoelectrons in an argon/methane atmosphere. The dielectric constant and breakdown strength of the films exhibited opposite behaviors, depending on the total pressure during the synthesis. The product of these two values decreased monotonically as the pressure increased. The Raman spectra were analyzed with a Voigt-type formula. Based on the results, the authors propose the “sp2 cluster model” for the DLC structure. This model consists of conductive clusters of sp2 carbons surrounded by a dielectric matrix sea of sp2 carbon, sp3 carbon, and hydrogen, and indicates that the dielectric constant of the whole DLC film is determined by the balance between the dielectric constant of the matrix and the total size of the clusters, while the breakdown strength is determined by the reciprocal of the cluster size. The model suggests that a high-κ DLC film can be synthesized at a middle pressure and consists of well-grown sp2 clusters and a dense matrix. A low-κ DLC film can be synthesized both at low and high pressures. The sp2 cluster model explains that a low-κ DLC film synthesized at low pressure consists of a dense matrix and a low density of sp2 clusters, and exhibits a high breakdown strength. On the other hand, a low-κ film synthesized at high pressure consists of a coarse matrix and a high density of clusters and exhibits a low breakdown strength.

1.
S.
Aisenberg
and
R.
Chabot
,
J. Appl. Phys.
42
,
2953
(
1971
).
2.
J.
Robertson
,
Mater. Sci. Eng. R
37
,
129
(
2002
).
3.
A.
Grill
,
Diamond Relat. Mater.
8
,
428
(
1999
).
4.
A.
Grill
,
Diamond Relat. Mater.
12
,
166
(
2003
).
5.
T.
Nakatani
,
K.
Okamoto
,
I.
Omura
, and
S.
Yamashita
,
J. Photopolym. Sci. Technol.
20
,
221
(
2007
).
6.
A.
Erdemir
and
C.
Donnet
,
J. Phys. D
39
,
R311
(
2006
).
7.
T.
Nakatani
,
K.
Okamoto
,
A.
Araki
, and
T.
Washimi
,
New Diamond Front. Carbon Technol.
16
,
187
(
2006
).
8.
S.
Takabayashi
,
K.
Okamoto
,
T.
Nakatani
,
H.
Sakaue
, and
T.
Takahagi
,
Jpn. J. Appl. Phys., Part 1
48
,
092304
(
2009
).
9.
S.
Takabayashi
,
K.
Okamoto
,
H.
Sakaue
,
T.
Takahagi
,
K.
Shimada
, and
T.
Nakatani
,
J. Appl. Phys.
104
,
043512
(
2008
).
10.
A.
Grill
,
Diamond Relat. Mater.
10
,
234
(
2001
).
11.
R. K.
Roy
and
K.-R.
Lee
,
J. Biomed. Mater. Res.
83B
,
72
(
2007
).
12.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
Y.
Zhang
,
S. V.
Dubonos
,
I. V.
Grigorieva
, and
A. A.
Firsov
,
Science
306
,
666
(
2004
).
13.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
M. I.
Katsnelson
,
I. V.
Grigorieva
,
S. V.
Dubonos
, and
A. A.
Firsov
,
Nature
438
,
197
(
2005
).
14.
A. H. Castro
Neto
,
F.
Guinea
,
N. M. R.
Peres
,
K. S.
Novoselov
, and
A. K.
Geim
,
Rev. Mod. Phys.
81
,
109
(
2009
).
16.
V.
Ryzhii
,
M.
Ryzhii
, and
T.
Otsuji
,
J. Appl. Phys.
101
,
083114
(
2007
).
17.
V.
Ryzhii
,
M.
Ryzhii
,
V.
Mitin
, and
T.
Otsuji
,
J. Appl. Phys.
110
,
094503
(
2011
).
18.
G. D.
Wilk
,
R. M.
Wallace
, and
J. M.
Anthony
,
J. Appl. Phys.
89
,
5243
(
2001
).
19.
M. C.
Lemme
,
T. J.
Echtermeyer
,
M.
Baus
, and
H.
Kurz
,
IEEE Electron Device Lett.
28
,
282
(
2007
).
20.
M. C.
Lemme
,
T. J.
Echtermeyer
,
M.
Baus
,
B. N.
Szafranek
,
J.
Bolten
,
M.
Schmidt
,
T.
Wahlbrink
, and
H.
Kurz
,
Solid-State Electron.
52
,
514
(
2008
).
21.
Y.-M.
Lin
,
K. A.
Jenkins
,
A.
Valdes-Garcia
,
J. P.
Small
,
D. B.
Farmer
, and
P.
Avouris
,
Nano Lett.
9
,
422
(
2009
).
22.
A.
Pirkle
,
R. M.
Wallace
, and
L.
Colombo
,
Appl. Phys. Lett.
95
,
133106
(
2009
).
23.
B.
Fallahazad
,
S.
Kim
,
L.
Colombo
, and
E.
Tutuc
,
Appl. Phys. Lett.
97
,
123105
(
2010
).
24.
F.
Schwierz
,
Nat. Nanotechnol.
5
,
487
(
2010
).
25.
S.
Takabayashi
,
S.
Ogawa
,
Y.
Takakuwa
,
H.-C.
Kang
,
R.
Takahashi
,
H.
Fukidome
,
M.
Suemitsu
,
T.
Suemitsu
, and
T.
Otsuji
,
Diamond Relat. Mater.
22
,
118
(
2012
).
26.
Y.
Wu
,
Y.-M.
Lin
,
A. A.
Bol
,
K. A.
Jenkins
,
F.
Xia
,
D. B.
Farmer
,
Y.
Zhu
, and
P.
Avouris
,
Nature
472
,
74
(
2011
).
27.
T.
Takami
,
S.
Ogawa
,
H.
Sumi
,
T.
Kaga
,
A.
Saikubo
,
E.
Ikenaga
,
M.
Sato
,
M.
Nihei
, and
Y.
Takakuwa
,
e-J. Surf. Sci. Nanotechnol.
7
,
882
(
2009
).
28.
H.
Sumi
,
S.
Ogawa
,
M.
Sato
,
A.
Saikubo
,
E.
Ikenaga
,
M.
Nihei
, and
Y.
Takakuwa
,
Jpn. J. Appl. Phys., Part 1
49
,
076201
(
2010
).
29.
M.
Yang
,
S.
Ogawa
,
S.
Takabayashi
,
T.
Otsuji
, and
Y.
Takakuwa
,
Thin Solid Films
523
,
25
(
2012
).
30.
M.
Yang
,
S.
Takabayashi
,
S.
Ogawa
,
H.
Hayashi
,
R.
Jesko
,
T.
Otsuji
, and
Y.
Takakuwa
,
Jpn. J. Appl. Phys., Part 1
52
,
110123
(
2013
).
31.
H.
Sakaue
,
S.
Fujiwara
,
S.
Shingubara
, and
T.
Takahagi
,
Appl. Phys. Lett.
78
,
309
(
2001
).
32.
S. W.
Benson
,
The Foundations of Chemical Kinetics
(
Krieger
,
Malabar
,
1980
).
33.
H.
Kyuragi
and
T.
Urisu
,
Appl. Phys. Lett.
50
,
1254
(
1987
).
34.
K.
Tanaka
,
E. O.
Sako
,
E.
Ikenaga
,
K.
Isari
,
S. A.
Sardar
,
S.
Wada
,
T.
Sekitani
,
K.
Mase
, and
N.
Ueno
,
J. Electron Spectrosc. Relat. Phenom.
119
,
255
(
2001
).
35.
S.
Wada
,
R.
Sumii
,
K.
Isari
,
S.
Waki
,
E. O.
Sako
,
T.
Sekiguchi
,
T.
Sekitani
, and
K.
Tanaka
,
Surf. Sci.
528
,
242
(
2003
).
36.
D.
Briggs
and
J. T.
Grant
,
Surface Analysis by Auger and X-Ray Photoelectron Spectroscopy
(
IM Publications and SurfaceSpectra
,
Chichester and Manchester, UK
,
2003
).
37.
K.
Kanda
,
K.
Yokota
,
M.
Tagawa
,
M.
Tode
,
Y.
Teraoka
, and
S.
Matsui
,
Jpn. J. Appl. Phys., Part 1
50
,
055801
(
2011
).
38.
D. F.
McMillen
and
D. M.
Golden
,
Annu. Rev. Phys. Chem.
33
,
493
(
1982
).
39.
Y.
Ohtomo
,
S.
Ogawa
, and
Y.
Takakuwa
, “Surface morphology of a Cu substrate flattened by a 2″ photoemission-assisted ion beam source surface and interface analysis,”
Surface Interface Anal.
44
(6),
670
673
(
2012
).
40.
N. W.
Ashcroft
and
N. D.
Mermin
,
Solid State Physics
(
Thomson Learning
,
Stamford, CT
,
1976
).
41.
J. W.
McPherson
,
J.
Kim
,
A.
Shanware
,
H.
Mogul
, and
J.
Rodriguez
,
IEEE Trans. Electron Devices
50
,
1771
(
2003
).
42.
A. C.
Ferrari
and
J.
Robertson
,
Phys. Rev. B
61
,
14095
(
2000
).
43.
A. C.
Ferrari
and
J.
Robertson
,
Phys. Rev. B
64
,
075414
(
2001
).
44.
W.
Heitler
,
Quantum Theory of Radiation
, 3rd ed. (
Oxford University Press
,
Oxford
,
1954
).
45.
A.
Jorio
,
M.
Dresselhaus
,
R.
Saito
, and
G. F.
Dresselhaus
,
Raman Spectroscopy in Graphene Related Systems
(
Wiley-VCH
,
Weinheim
,
2011
).
46.
R.
Loudon
,
The Quantum Theory of Light
, 3rd ed. (
Oxford University Press
,
Oxford, U.K.
,
2003
).
47.
S. D. M.
Brown
,
A.
Jorio
,
P.
Corio
,
M. S.
Dresselhaus
,
G.
Dresselhaus
,
R.
Saito
, and
K.
Kneipp
,
Phys. Rev. B
63
,
155414
(
2001
).
48.
H.
Farhat
,
H.
Son
,
G. G.
Samsonidze
,
S.
Reich
,
M. S.
Dresselhaus
, and
J.
Kong
,
Phys. Rev. Lett.
99
(
2007
).
49.
M. V.
Klein
, in
Light Scattering in Solids I
, edited by
M.
Cardona
(
Springer
,
Berlin
1983
), p.
147
.
50.
A.
Pinczuk
and
E.
Burstein
, in
Light Scattering in Solids I
, edited by
M.
Cardona
(
Springer
,
Berlin
,
1983
), p.
23
.
51.
J.
Maultzsch
,
S.
Reich
,
C.
Thomsen
,
H.
Requardt
, and
P.
Ordejon
,
Phys. Rev. Lett.
92
,
075501
(
2004
).
52.
A. C.
Ferrari
,
Solid State Commun.
143
,
47
(
2007
).
53.
M. M.
Lucchese
,
F.
Stavale
,
E. H. M.
Ferreira
,
C.
Vilani
,
M. V. O.
Moutinho
,
R. B.
Capaz
,
C. A.
Achete
, and
A.
Jorio
,
Carbon
48
,
1592
(
2010
).
55.
W. A. de
Heer
and
D.
Ugarte
,
Chem. Phys. Lett.
207
,
480
(
1993
).
56.
A.
Marzec
,
Fuel Process. Technol.
77
,
25
(
2002
).
57.
R. M.
Davidson
,
Studying the Structural Chemistry of Coal
(
IEA Clean Coal Centre
,
London, UK
,
2004
).
You do not currently have access to this content.