The adsorption of several organo-functional groups (−NH2, −CH3, −COOH, −CHO, and −OH) and alanine on Li decorated carbon nanotubes (CNTs) are studied, based on the first-principle calculations. The calculated binding energies on Li−CNTs show obvious enhancement relative to the cases on pure CNTs, from about 0.3 eV to about 1.4 eV except −CH3, which is attributed to strong electrostatic dipole attraction between positive Li ion and polarized organo-functional groups by charge population analysis. It is interesting that the adsorption could be effectively adjusted under external electric field for the interaction with Li−group dipole. For the combinational contribution of charge redistribution and interaction of inherent electric dipole with external electric field, the adsorption of these organo-functional groups shows two discriminative variety trends. Finally, the adsorption of alanine including −NH2, −CH3, and −COOH groups is studied as an illustration to generalize above conclusions to organic macromolecule on Li decorated CNTs.

1.
B.
Pan
and
B.
Xing
,
Environ. Sci. Technol.
42
,
9005
(
2008
).
2.
K.
Yang
and
B.
Xing
,
Chem. Rev.
110
,
5989
(
2010
).
3.
T. M.
Allen
and
P. R.
Cullis
,
Science
303
,
1818
(
2004
).
4.
T.
Garg
,
O.
Singh
,
S.
Arora
, and
R.
Murthy
,
Crit. Rev. Ther. Drug Carrier Syst.
29
,
1
(
2012
).
5.
H. K.
Makadia
and
S. J.
Siegel
,
Polymers
3
,
1377
(
2011
).
6.
R. M.
Mainardes
and
L. P.
Silva
,
Curr. Drug Targets
5
,
449
(
2004
).
7.
M.
Zou
,
J.
Zhang
,
J.
Chen
, and
X.
Li
,
Environ. Sci. Technol.
46
,
8887
(
2012
).
8.
G. De
Pascali
,
R.
Nasi
,
A.
Valentini
,
M.
Nitti
,
G.
Casamassima
,
D.
Melisi
, and
M.
Valentini
, in
Spray Deposited Carbon Nanotubes for Organic Vapour Sensors
(
IEEE
,
2013
), p.
184
.
9.
W.
Zhang
,
Z.
Zhang
, and
Y.
Zhang
,
Nanoscale Res. Lett.
6
,
1
(
2011
).
10.
L.
Meng
,
X.
Zhang
,
Q.
Lu
,
Z.
Fei
, and
P. J.
Dyson
,
Biomaterials
33
,
1689
(
2012
).
11.
A.
Peigney
,
C.
Laurent
,
E.
Flahaut
,
R.
Bacsa
, and
A.
Rousset
,
Carbon
39
,
507
(
2001
).
12.
F.
Tournus
and
J.-C.
Charlier
,
Phys. Rev. B
71
,
165421
(
2005
).
13.
S.
Zhang
,
T.
Shao
,
H. S.
Kose
, and
T.
Karanfil
,
Environ. Toxicol. Chem.
31
,
79
(
2012
).
14.
F.
Tournus
,
S.
Latil
,
M.
Heggie
, and
J.-C.
Charlier
,
Phys. Rev. B
72
,
075431
(
2005
).
15.
Z.
Liu
,
K.
Chen
,
C.
Davis
,
S.
Sherlock
,
Q.
Cao
,
X.
Chen
, and
H.
Dai
,
Cancer Res.
68
,
6652
(
2008
).
16.
A.
Bielicka
,
M.
Wiśniewski
,
A. P.
Terzyk
,
P. A.
Gauden
,
S.
Furmaniak
,
K.
Roszek
,
P.
Kowalczyk
, and
A.
Bieniek
,
J. Phys.: Condens. Matter
25
,
355002
(
2013
).
17.
Y.
Cheng
,
Q. X.
Pei
, and
H.
Gao
,
Nanotechnology
20
,
145101
(
2009
).
18.
C.
Rungnim
,
T.
Rungrotmongkol
,
S.
Hannongbua
, and
H.
Okumura
,
J. Mol. Graph. Modell.
39
,
183
(
2013
).
19.
S.
Peretz
and
O.
Regev
,
Curr. Opin. Colloid Interface Sci.
17
,
360
(
2012
).
20.
M. F. De
Volder
,
S. H.
Tawfick
,
R. H.
Baughman
, and
A. J.
Hart
,
Science
339
,
535
(
2013
).
21.
R. G.
Mendes
,
A.
Bachmatiuk
,
B.
Büchner
,
G.
Cuniberti
, and
M. H.
Rümmeli
,
J. Mater. Chem. B
1
,
401
(
2013
).
22.
C. M.
Chang
and
A. F.
Jalbout
,
Thin Solid Films
518
,
2070
(
2010
).
23.
J.
Zhao
,
J. P.
Lu
,
J.
Han
, and
C.-K.
Yang
,
Appl. Phys. Lett.
82
,
3746
(
2003
).
24.
F.
Su
,
C.
Lu
, and
S.
Hu
,
Colloids Surf. A
353
,
83
(
2010
).
25.
A.
Al-Ghamdi
,
E.
Shalaan
,
F.
Al-Hazmi
,
A. S.
Faidah
,
S.
Al-Heniti
, and
M.
Husain
,
J. Nanomater.
2012
,
89
.
26.
Z.
Zhou
,
X.
Gao
,
J.
Yan
, and
D.
Song
,
Carbon
44
,
939
(
2006
).
27.
S.
Seenithurai
,
R. Kodi
Pandyan
,
S. Vinodh
Kumar
, and
M.
Mahendran
,
Int. J. Hydrogen Energy
38
,
7376
(
2013
).
28.
K.
Gopalsamy
and
V.
Subramanian
,
Int. J. Hydrogen Energy
39
,
2549
(
2014
).
29.
S.-h.
Huang
,
L.
Miao
,
Y.-j.
Xiu
,
M.
Wen
,
C.
Li
,
L.
Zhang
, and
J.-j.
Jiang
,
J. Appl. Phys.
112
,
124312
(
2012
).
30.
H.-W.
Lei
,
H.
Zhang
, and
W.-D.
Wu
,
Model. Numer. Simul. Mater. Sci.
3
,
9
(
2013
).
31.
G. E.
Froudakis
,
Nano Lett.
1
,
531
(
2001
).
32.
C.
Chen
,
K.
Xu
,
X.
Ji
,
L.
Miao
, and
J.
Jiang
,
Phys. Chem. Chem. Phys.
16
,
11031
(
2014
).
33.
I.
Cabria
,
M.
López
, and
J.
Alonso
,
J. Chem. Phys.
123
,
204721
(
2005
).
34.
L.
Chen
,
Y.
Zhang
,
N.
Koratkar
,
P.
Jena
, and
S. K.
Nayak
,
Phys. Rev. B
77
,
033405
(
2008
).
35.
F.
Pinkerton
,
B.
Wicke
,
C.
Olk
,
G.
Tibbetts
,
G.
Meisner
,
M.
Meyer
, and
J.
Herbst
,
J. Phys. Chem. B
104
,
9460
(
2000
).
36.
C.
Chen
,
L.
Miao
,
K.
Xu
,
J.
Yao
,
C.
Li
, and
J.
Jiang
,
Phys. Chem. Chem. Phys.
15
,
6431
(
2013
).
37.
W.
Liu
,
Y.
Zhao
,
J.
Nguyen
,
Y.
Li
,
Q.
Jiang
, and
E.
Lavernia
,
Carbon
47
,
3452
(
2009
).
38.
Y.
Sato
,
K.
Takai
, and
T.
Enoki
,
Nano Lett.
11
,
3468
(
2011
).
39.
V.
Surya
,
K.
Iyakutti
,
H.
Mizuseki
, and
Y.
Kawazoe
,
Int. J. Hydrogen Energy
36
,
13645
(
2011
).
40.
A. M.
Suarez
,
L. R.
Radovic
,
E.
Bar-Ziv
, and
J. O.
Sofo
,
Phys. Rev. Lett.
106
,
146802
(
2011
).
41.
J. M.
Soler
,
E.
Artacho
,
J. D.
Gale
,
A.
García
,
J.
Junquera
,
P.
Ordejón
, and
D.
Sánchez-Portal
,
J. Phys.: Condens. Matter
14
,
2745
(
2002
).
42.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
).
43.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
44.
J. P.
Perdew
and
A.
Zunger
,
Phys. Rev. B
23
,
5048
(
1981
).
45.
H. J.
Monkhorst
and
J. D.
Pack
,
Phys. Rev. B
13
,
5188
(
1976
).
46.
A.
Motulsky
,
M.
Lafleur
,
A.-C.
Couffin-Hoarau
,
D.
Hoarau
,
F.
Boury
,
J.-P.
Benoit
, and
J.-C.
Leroux
,
Biomaterials
26
,
6242
(
2005
).
47.
M.
Vera
,
J.
Puiggali
, and
J.
Coudane
,
J. Microencapsulation
23
,
686
(
2006
).
48.
M.
Ni
,
L.
Huang
,
L.
Guo
, and
Z.
Zeng
,
Int. J. Hydrogen Energy
35
,
3546
(
2010
).
49.
Y.
Wen
,
H.
Liu
,
X.
Tan
,
L.
Pan
, and
J.
Shi
,
J. Appl. Phys.
107
,
034312
(
2010
).
50.
W.
Yan-Wei
,
L.
Hui-Jun
,
P.
Lu
,
T.
Xiao-Jian
, and
S.
Jing
,
Chin. Phys. Lett.
26
,
087102
(
2009
).
51.
Y.
Wen
,
H.
Liu
,
L.
Miao
, and
Y.
Hu
,
J. Nanosci. Nanotechnol.
10
,
5399
(
2010
).
You do not currently have access to this content.