In this article, electrodeposition method is used to demonstrate growth of InSb nanowire (NW) arrays with hierarchical branched structures and complex morphology at room temperature using an all-solution, catalyst-free technique. A gold coated, porous anodic alumina membrane provided the template for the branched NWs. The NWs have a hierarchical branched structure, with three nominal regions: a “trunk” (average diameter of 150 nm), large branches (average diameter of 100 nm), and small branches (average diameter of sub-10 nm to sub-20 nm). The structural properties of the branched NWs were studied using scanning transmission electron microscopy, transmission electron microscopy, scanning electron microscopy, x-ray diffraction, energy dispersive x-ray spectroscopy, and Raman spectroscopy. In the as-grown state, the small branches of InSb NWs were crystalline, but the trunk regions were mostly nanocrystalline with an amorphous boundary. Post-annealing of NWs at 420 °C in argon produced single crystalline structures along ⟨311⟩ directions for the branches and along ⟨111⟩ for the trunks. Based on the high crystallinity and tailored structure in this branched NW array, the effective refractive index allows us to achieve excellent antireflection properties signifying its technological usefulness for photon management and energy harvesting.

1.
Y.
Zhao
,
D.
Candebat
,
C.
Delker
,
Y.
Zi
,
D.
Janes
,
J.
Appenzeller
, and
C.
Yang
,
Nano Lett.
12
,
5331
5336
(
2012
).
2.
Y.
Huang
,
X.
Duan
, and
C. M.
Lieber
,
Small
1
,
142
147
(
2005
).
3.
Z.
Fan
,
H.
Razavi
,
J.-W.
Do
,
A.
Moriwaki
,
O.
Ergen
,
Y.-L.
Chueh
,
P. W.
Leu
,
J. C.
Ho
,
T.
Takahashi
,
L. A.
Reichertz
,
S.
Neale
,
K.
Yu
,
M.
Wu
,
J. W.
Ager
, and
A.
Javey
,
Nature Mater.
8
,
648
653
(
2009
).
4.
J. H.
Seol
,
A. L.
Moore
,
S. K.
Saha
,
F.
Zhou
,
L.
Shi
,
Q. L.
Ye
,
R.
Scheffler
,
N.
Mingo
, and
T.
Yamada
,
J. Appl. Phys.
101
,
023706
(
2007
).
5.
L.
Xu
,
Z.
Jiang
,
Q.
Qing
,
L.
Mai
,
Q.
Zhang
, and
C. M.
Lieber
,
Nano Lett.
13
,
746
751
(
2013
).
6.
R. S.
Wagner
and
W. C.
Ellis
,
Appl. Phys. Lett.
4
,
89
90
(
1964
).
7.
M.
Tian
,
J.
Wang
,
J.
Kurtz
,
T. E.
Mallouk
, and
M. H. W.
Chan
,
Nano Lett.
3
,
919
923
(
2003
).
8.
H.
Yu
and
W. E.
Buhro
,
Adv. Mater.
15
,
416
419
(
2003
).
9.
K. G.
Biswas
,
H. E.
Matbouly
,
V.
Rawat
,
J. L.
Schroeder
, and
T. D.
Sands
,
Appl. Phys. Lett.
95
,
073108
(
2009
).
10.
G.
Meng
,
Y. J.
Jung
,
A.
Cao
,
R.
Vajtai
, and
P. M.
Ajayan
,
Proc. Natl. Aacd. Sci. U.S.A.
102
,
7074
7078
(
2005
).
11.
M.
Paladugu
,
J.
Zou
,
Y. N.
Guo
,
X.
Zhang
,
Y.
Kim
,
H. J.
Joyce
,
Q.
Gao
,
H. H.
Tan
, and
C.
Jagadish
,
Appl. Phys. Lett.
93
,
101911
(
2008
).
12.
J. E.
Allen
,
E. R.
Hemesath
,
D. E.
Perea
,
J. L.
Lensch-Falk
,
Z. Y.
Li
,
F.
Yin
,
M. H.
Gass
,
P.
Wang
,
A. L.
Bleloch
,
R. E.
Palmer
, and
L. J.
Lauhon
,
Nat. Nanotechnol.
3
,
168
173
(
2008
).
13.
J. B.
Hannon
,
S.
Kodambaka
,
F. M.
Ross
, and
R. M.
Tromp
,
Nature
440
,
69
71
(
2006
).
14.
S. A.
Dayeh
,
N. H.
Mack
,
J. Y.
Huang
, and
S. T.
Picraux
,
Appl. Phys. Lett.
99
,
023102
(
2011
).
15.
E.
Dailey
,
P.
Madras
, and
J.
Drucker
,
J. Appl. Phys.
108
,
064320
(
2010
).
16.
U.
Philipose
,
G.
Sapkota
,
P.
Gali
, and
P.
Nukala
,
MRS Proc.
1302
,
mrsf10-1302-w09-31
(
2011
).
17.
X.
Zhang
,
Y.
Hao
,
G.
Meng
, and
L.
Zhang
,
J. Electrochem. Soc.
152
,
C664
C668
(
2005
).
18.
J.
Ortega
and
J.
Herrero
,
J. Electrochem. Soc.
136
,
3388
3391
(
1989
).
19.
M. I.
Khan
,
M.
Penchev
,
X.
Jing
,
X.
Wang
,
K. N.
Bozhilov
,
M.
Ozkan
, and
C. S.
Ozkan
,
J. Nanoelectron. Optoelectron.
3
,
199
202
(
2008
).
20.
S. R.
Das
,
C. J.
Delker
,
D.
Zakharov
,
Y. P.
Chen
,
T. D.
Sands
, and
D. B.
Janes
,
Appl. Phys. Lett.
98
,
243504
(
2011
).
21.
Y.-L.
Chueh
,
Z.
Fan
,
K.
Takei
,
H.
Ko
,
R.
Kapadia
,
A. A.
Rathore
,
N.
Miller
,
K.
Yu
,
M.
Wu
,
E. E.
Haller
, and
A.
Javey
,
Nano Lett.
10
,
520
523
(
2010
).
22.
J.
Zhu
,
Z.
Yu
,
G. F.
Burkhard
,
C.-M.
Hsu
,
S. T.
Connor
,
Y.
Xu
,
Q.
Wang
,
M.
McGehee
,
S.
Fan
, and
Y.
Cui
,
Nano Lett.
9
,
279
282
(
2009
).
23.
Z.
Fan
,
R.
Kapadia
,
P. W.
Leu
,
X.
Zhang
,
Y.-L.
Chueh
,
K.
Takei
,
K.
Yu
,
A.
Jamshidi
,
A. A.
Rathore
,
D. J.
Ruebusch
,
M.
Wu
, and
A.
Javey
,
Nano Lett.
10
,
3823
3827
(
2010
).
24.
J.
Zhu
,
H.
Peng
,
A. F.
Marshall
,
D. M.
Barnett
,
W. D.
Nix
, and
Y.
Cui
,
Nat. Nanotechnol.
3
,
477
481
(
2008
).
25.
Y.
Jung
,
D.-K.
Ko
, and
R.
Agarwal
,
Nano Lett.
7
,
264
268
(
2007
).
26.
K.
Seo
,
M.
Wober
,
P.
Steinvurzel
,
E.
Schonbrun
,
Y.
Dan
,
T.
Ellenbogen
, and
K. B.
Crozier
,
Nano Lett.
11
,
1851
1856
(
2011
).
27.
P. M.
Wu
,
N.
Anttu
,
H. Q.
Xu
,
L.
Samuelson
, and
M.-E.
Pistol
,
Nano Lett.
12
,
1990
1995
(
2012
).
28.
H.
Chen
,
X.
Sun
,
K. W. C.
Lai
,
M.
Meyyappan
, and
N.
Xi
, in
IEEE Nanotechnology Materials and Devices Conference (NMDC), East Lansing, MI, USA
, 2–5 June
2009
, pp.
212
216
.
29.
N.
Mingo
,
Appl. Phys. Lett.
84
,
2652
2654
(
2004
).
30.
I. V.
Weperen
,
S. R.
Plissard
,
E. P. A. M.
Bakkers
,
S. M.
Frolov
, and
L. P.
Kouwenhoven
,
Nano Lett.
13
,
387
391
(
2013
).
31.
32.
V.
Mourik
,
K.
Zuo
,
S. M.
Frolov
,
S. R.
Plissard
,
E. P. A. M.
Bakkers
, and
L. P.
Kouwenhoven
,
Science
336
,
1003
1007
(
2012
).
33.
P.
Caroff
,
M. E.
Messing
,
B. M.
Borg
,
K. A.
Dick
,
K.
Deppert
, and
L. E.
Wernersson
,
Nanotechnology
20
,
495606
(
2009
).
34.
A.
Pitanti
,
D.
Coquillat
,
D.
Ercolani
,
L.
Sorba
,
F.
Teppe
,
W.
Knap
,
G. De.
Simoni
,
F.
Beltram
,
A.
Tredicucci
, and
M. S.
Vitiello
,
Appl. Phys. Lett.
101
,
141103
(
2012
).
35.
A.
Ghahremaninezhad
and
A.
Dolati
,
ECS Trans.
28
,
13
25
(
2010
).
36.
A.
Mohammad
,
S. R.
Das
,
M. R.
Khan
,
M. A.
Alam
, and
D. B.
Janes
,
Nano Lett.
12
,
6112
6118
(
2012
).
37.
B. D.
Cullity
and
S. R.
Stock
,
Elements of X-Ray Diffraction
, 3rd ed. (
Prentice-Hall
,
New York
,
2001
),
664
pp.
38.
Q.
Jiang
and
M. D.
Ward
,
Chem. Soc. Rev.
43
,
2066
2079
(
2014
).
39.
A.
Pinczuk
and
E.
Burstein
,
Phys. Rev. Lett.
21
,
1073
1075
(
1968
).
40.
N.
Wada
,
H.
Takayama
, and
S.
Morohashi
, in APS March meeting 55, Portland, Oregon, March 15–19
2010
, Abstract No. L9.013.
41.
J. S.
Lannin
,
J. M.
Calleja
, and
M.
Cardona
,
Phys. Rev. B
12
,
585
593
(
1975
).
42.
U.
Rettweiler
,
W.
Richter
,
U.
Resch
,
J.
Geurts
,
R.
Sporken
,
P.
Xhonneux
, and
R.
Caudano
,
J. Phys: Condens. Matter
1
,
SB93
SB97
(
1989
).
43.
O. M.
Berengue
,
A. D.
Rodrigues
,
C. J.
Dalmaschio
,
A. J. C.
Lanfredi
,
E. R.
Leite
, and
A. J.
Chiquito
,
J. Phys. D: Appl. Phys.
43
,
045401
(
2010
).
44.
Z.
Deng
,
F.
Tang
,
D.
Chen
,
X.
Meng
,
L.
Cao
, and
B.
Zou
,
J. Phys. Chem. B
110
,
18225
18230
(
2006
).
45.
W.
Kiefer
,
W.
Richter
, and
M.
Cardona
,
Phys. Rev. B
12
,
2346
2354
(
1975
).
46.
W. S.
Shi
,
Y. F.
Zheng
,
N.
Wang
,
C. S.
Lee
, and
S. T.
Lee
,
Appl. Phys. Lett.
78
,
3304
3306
(
2001
).
47.
S.
Piscanec
,
M.
Cantoro
,
A. C.
Ferrari
,
J. A.
Zapien
,
Y.
Lifshitz
,
S. T.
Lee
,
S.
Hofmann
, and
J.
Robertson
,
Phys. Rev. B
68
,
241312
(
2003
).
48.
E.
Garnett
and
P.
Yang
,
Nano Lett.
10
,
1082
1087
(
2010
).
49.
K. X.
Wang
,
Z.
Yu
,
V.
Liu
,
Y.
Cui
, and
S.
Fan
,
Nano Lett.
12
,
1616
1619
(
2012
).
50.
K.
Sun
,
X.
Pang
,
S.
Shen
,
X.
Qian
,
J. S.
Cheung
, and
D.
Wang
,
Nano Lett.
13
,
2064
2072
(
2013
).
51.
H. M.
Chen
,
C. K.
Chen
,
Y.-C.
Chang
,
C.-W.
Tsai
,
R.-S.
Liu
,
S.-F.
Hu
,
W.-S.
Chang
, and
K.-H.
Chen
,
Angew. Chem.
122
,
6102
6105
(
2010
).
52.
S.-K.
Kim
,
R. W.
Day
,
J. F.
Cahoon
,
T. J.
Kempa
,
K.-D.
Song
,
H.-G.
Park
, and
C. M.
Lieber
,
Nano Lett.
12
,
4971
4976
(
2012
).
53.
D. M.
Callahan
,
J. N.
Munday
, and
H. A.
Atwater
,
Nano Lett.
12
,
214
218
(
2012
).
54.
J.
Wallentin
,
N.
Anttu
,
D.
Asoli
,
M.
Huffman
,
I.
Åberg
,
M. H.
Magnusson
,
G.
Siefer
,
P.
Fuss-Kailuweit
,
F.
Dimroth
,
B.
Witzigmann
,
H. Q.
Xu
,
L.
Samuelson
,
K.
Deppert
, and
M. T.
Borgström
,
Science
339
,
1057
1060
(
2013
).
55.
M. L.
Brongersma
,
Y.
Cui
, and
S.
Fan
,
Nature Mater.
13
,
451
460
(
2014
).
56.
See supplementary material at http://dx.doi.org/10.1063/1.4893704 for cyclic voltammetry for finding the growth parameters (redox potentials) for InSb NWs, deposition of InSb branched nanowires, x-ray diffraction analysis, NW growth rate in region II of current vs. voltage characteristics, and the refractive index simulation for InSb.

Supplementary Material

You do not currently have access to this content.