In the quest of materials with high temperature ferromagnetism and low temperature anti-ferromagnetism, we prepare Co3-xMnxTeO6; (0 < x ≤ 2) solid solutions. Room temperature structural investigations on these solid solutions as a function of Mn concentration using Synchrotron X-ray diffraction (SXRD) and X-ray absorption near edge structure measurements in corroboration with magnetism are presented. Phase diagram obtained from Rietveld Refinement on SXRD data as a function of Mn concentration indicates doping disproportionate mixing of both monoclinic (C2/c) and rhombohedral (R 3¯) structure for x < 0.5, while only R 3¯ structure for x ≥ 0.5. Further, it shows increase in both lattice parameters as well as average transition metal-oxygen (Co/Mn-O) bond lengths for x ≥ 0.5. Co and Mn K-edge XANES spectra reveal that both Co and Mn are in mixed oxidation state, Co2+/Mn2+ and Co3+/Mn3+. Relative ratios of Co3+/Co2+ and Mn3+/Mn2+ obtained using Linear combination fit decrease with increasing x (for x ≥ 0.5). These structural and spectroscopic evidences are used to provide possible interpretation of the observed paramagnetic to ferromagnetic transition at around 185 K followed by an enhanced antiferromagnetic transition ∼45 K for x = 0.5.

N. A.
Spaldin
,
S. W.
Cheong
, and
R.
Ramesh
,
Phys. Today
63
(
10
),
38
(
2010
);
J.
Wang
,
J. B.
Neaton
,
H.
Zheng
,
V.
Nagarajan
 et al.,
Science
299
,
1719
(
2003
);
[PubMed]
W.
Wang
,
J.
Zhao
,
W.
Wang
 et al.,
Phys. Rev. Lett.
110
,
237601
(
2013
).
[PubMed]
2.
W. H.
Li
,
C. W.
Wang
,
D.
Hsu
,
C. H.
Lee
,
C. M.
Wu
,
C. C.
Chou
,
H. D.
Yang
,
Y.
Zhao
,
S.
Chang
,
J. W.
Lynn
, and
H.
Berger
,
Phys. Rev. B
85
,
094431
(
2012
).
3.
I. N.
Apostolova
,
A. T.
Apostolov
,
S. G.
Bahoosh
, and
J. M.
Wesselinowa
,
J. Appl. Phys.
113
,
203904
(
2013
);
J. F.
Scott
,
NPG Asia Mater.
5
,
e72
(
2013
).
4.
M.
Hudl
,
R.
Mathieu
,
S. A.
Ivanov
,
M.
Weil
,
V.
Carolus
,
T.
Lottermoser
,
M.
Fiebig
,
Y.
Tokunaga
,
Y.
Taguchi
,
Y.
Tokura
, and
P.
Nordblad
,
Phys. Rev. B
84
,
180404(R)
(
2011
).
5.
H.
Singh
,
H.
Ghosh
,
A. K.
Sinha
,
M. N.
Singh
,
G.
Sharma
,
S.
Patnaik
, and
S. K.
Deb
, e-print arXiv:1309.6417[cond-mat.mtrl-sci] (
2013
).
6.
C. W.
Wang
,
C. H.
Lee
,
C. Y.
Li
,
C. M.
Wu
,
W. H.
Li
,
C. C.
Chou
,
H. D.
Yang
,
J. W.
Lynn
,
Q.
Huang
,
A. B.
Harris
, and
H.
Berger
,
Phys. Rev. B
88
,
184427
(
2013
).
7.
S. A.
Ivanov
,
P.
Nordblad
,
R.
Mathieu
,
R.
Tellgren
,
C.
Ritter
,
N.
Golubko
,
E. D.
Politova
, and
M.
Weil
,
Mater. Res. Bull.
46
,
1870
(
2011
).
8.
R.
Mathieu
,
S. A.
Ivanov
,
P.
Nordblad
, and
M.
Weil
,
Eur. Phys. J. B
86
,
361
(
2013
).
9.
S. A.
Ivanov
,
R.
Mathieu
,
P.
Nordblad
,
C.
Ritter
,
R.
Tellgren
,
N.
Golubko
,
A.
Mosunov
,
E. D.
Politova
, and
M.
Weil
,
Mater. Res. Bull.
50
,
42
(
2014
).
10.
P.
Schiffer
,
A. P.
Ramirez
,
W.
Bao
, and
S. W.
Cheong
,
Phys. Rev. Lett.
75
,
3336
(
1995
);
[PubMed]
M.
Sikora
,
K.
Knizek
,
C.
Kapusta
, and
P.
Glatzel
,
J. Appl. Phys.
103
,
07C907
(
2008
).
11.
S. A.
Ivanov
,
R.
Mathieu
,
P.
Nordblad
,
E.
Politova
,
R.
Tellgren
,
C.
Ritter
, and
V.
Proidakova
,
J. Magn. Magn. Mater.
324
,
1637
(
2012
);
R.
Mathieu
,
S. A.
Ivanov
,
R.
Tellgren
, and
P.
Nordblad
,
Phys. Rev. B
83
,
174420
(
2011
).
12.
P. G.
Radaelli
,
D. E.
Cox
,
M.
Marezio
,
S. W.
Cheong
,
P. E.
Schiffer
, and
A. P.
Ramirez
,
Phys. Rev. Lett.
75
,
4488
(
1995
).
13.
S.
Cho
,
S.
Choi
,
G. B.
Cha
,
S. C.
Hong
,
Y.
Kim
,
Y. J.
Zhao
,
A. J.
Freeman
,
J. B.
Ketterson
,
B. J.
Kim
,
Y. C.
Kim
, and
B. C.
Choi
,
Phys. Rev. Lett.
88
,
257203
(
2002
).
14.
A.
Ganguly
, “
Fundamentals of physical chemistry
,”
Pearson Education India
(
2012
), p.
3.24
.
15.
A. K.
Sinha
,
A.
Sagdeo
,
P.
Gupta
,
A.
Upadhyay
,
A.
Kumar
,
M. N.
Singh
,
R. K.
Gupta
,
S. R.
Kane
,
A.
Verma
, and
S. K.
Deb
,
J. Phys.: Conf. Ser.
425
,
072017
(
2013
).
16.
A. P.
Hammersley
,
S. O.
Svensson
, and
A.
Thompson
,
Nucl. Instrum. Methods A
346
,
312
(
1994
).
17.
J.
Rodriguez-Carvajal
,
Physica B
192
,
55
(
1993
);
D. L.
Bish
and
S. A.
Howard
,
J. Appl. Cryst.
21
,
86
(
1988
).
18.
S. Z.
Karazhanov
,
P.
Ravindran
,
P.
Vajeeston
,
A. G.
Ulyashin
,
H.
Fjellvag
, and
B. G.
Svensson
,
J. Phys.: Condens. Matter
21
,
485801
(
2009
).
19.
R. D.
Shannon
,
Acta Crystallogr. A
32
,
751
(
1976
).
20.
B. D.
Cullity
,
Elements of X-Ray Diffraction
(
Addison Wesley
,
Reading, Mass.
,
1959
).
21.
A. Z.
Simoes
,
A. H. M.
Gonzalez
,
A. A.
Cavalheiro
,
M. A.
Zaghete
,
B. D.
Stojanovic
, and
J. A.
Varela
,
Ceram. Int.
28
,
265
(
2002
).
22.
J.
Park
,
S.
Lee
,
M.
Kang
,
K.
Jang
,
C.
Lee
,
S. V.
Streltsov
,
V. V.
Mazurenko
,
M. V.
Valentyuk
,
J. E.
Medvedeva
,
T.
Kamiyama
, and
J. G.
Park
,
Phys. Rev. B.
82
,
054428
(
2010
).
23.
H.
Singh
,
H.
Ghosh
,
T. V. C.
Rao
, and
A. K.
Sinha
, e-print arXiv:1404.1658[cond-mat.mtrl-sci] (
2014
).
24.
J. C.
Park
,
S. W.
Cho
,
J. H.
Jeong
, and
G. H.
Jeong
,
Bull. Korean Chem. Soc.
21
,
973
(
2000
).
25.
K.
Momma
and
F.
Izumi
,
J. Appl. Crystallogr.
44
,
1272
1276
(
2011
);
S. J.
Clark
,
M. D.
Segall
,
C. J.
Pickard
,
P. J.
Hasnip
,
M. J.
Probert
,
K.
Refson
, and
M. C.
Payne
, “
First principles methods using CASTEP
,”
Zeitschriftfuer Kristallographie
220
,
567
(
2005
).
26.
D. C.
Koningsberger
and
R.
Prins
,
X-Ray Absorption
(
Wiley
,
New York
,
1988
);
B. K.
Teo
,
Basic Principles and Data Analysis
(
Springer
,
Berlin
,
1986
);
F. de
Groot
,
G.
Vanko
, and
P.
Glatzel
,
J. Phys. Condens. Matter
21
,
104207
(
2009
).
[PubMed]
27.
H.
Singh
,
A. K.
Sinha
,
M. N.
Singh
,
P.
Tiwari
,
D. M.
Phase
, and
S. K.
Deb
,
J. Phys. Chem. Solids
75
,
397
(
2014
).
28.
B.
Ajiboye
,
O. O.
Akinremi
, and
A.
Jürgensen
,
Soil Sci. Soc. Am. J.
71
,
1288
(
2007
).
29.
N.
Jiang
and
C. H. John
Spence
,
Phys. Rev. B
70
,
184113
(
2004
).
30.
M.
Yashima
,
H.
Yamada
,
S.
Nuansaeng
, and
T.
Ishihara
,
Chem. Mater.
24
,
4100
(
2012
);
A. A.
Taskin
,
A. N.
Lavrov
, and
Y.
Ando
,
Phys. Rev. B
71
,
134414
(
2005
).
31.
L.
Malavasi
,
C.
Ritter
,
M. C.
Mozzati
,
C.
Tealdi
,
M. S.
Islam
,
C. B.
Azzoni
, and
G.
Flor
,
J. Solid State Chem.
178
,
2042
(
2005
).
32.
N.
Hollmann
,
M. W.
Haverkort
,
M.
Benomar
,
M.
Cwik
,
M.
Braden
, and
T.
Lorenz
,
Phys. Rev. B
83
,
174435
(
2011
).
33.
R.
Zhao
,
K.
Jin
,
Z.
Xu
,
H.
Guo
,
L.
Wang
,
C.
Ge
,
H.
Lu
, and
G.
Yang
,
Appl. Phys. Lett.
102
,
122402
(
2013
).
34.
S.
Sonoda
,
I.
Tanaka
,
H.
Ikeno
,
T.
Yamamoto
,
F.
Oba
,
T.
Araki
,
Y.
Yamamoto
,
K.
Suga
,
Y.
Nanishi
,
Y.
Akasaka
,
K.
Kindo
, and
H.
Hori
,
J. Phys.: Condens. Matter
18
,
4615
(
2006
).
35.
T.
Harada
,
I.
Ohkubo
,
M.
Lippmaa
,
Y.
Matsumoto
,
M.
Sumiya
,
H.
Koinuma
, and
M.
Oshima
,
Rap. Res. Lett.
5
,
34
(
2011
).
36.
D.
Kumar
and
A.
Banerjee
,
J. Phys.: Condens. Matter
25
,
216005
(
2013
).
37.
D. J.
Goossens
,
K. F.
Wilson
,
M.
James
,
A. J.
Studer
, and
C. L.
Wang
,
Phys. Rev. B
69
,
134411
(
2004
).
38.
L. D.
Yao
,
W.
Zhang
,
F. Y.
Li
,
C. Q.
Jin
, and
R. C.
Yu
,
J. Appl. Phys.
103
,
063909
(
2008
).
39.
R. C.
Flores
,
N. S.
Bingham
,
M. H.
Phan
,
M. A.
Torija
,
C.
Leighton
,
V.
Franco
,
A.
Conde
,
T. L.
Phan
,
S. C.
Yu
, and
H.
Srikanth
,
J. Phys.: Condens. Matter
26
,
286001
(
2014
).
40.
H.
Singh
,
H.
Ghosh
,
A. K.
Sinha
 et al. “Low temperature structural and magnetic properties of Co3-xMnxTeO6” (unpublished).
41.
V.
Cuartero
,
J.
Blasco
,
J.
Garcia
,
S.
Lafuerza
,
G.
Subias
,
J. A. R.
Velamazan
, and
C.
Ritter
,
J. Phys.: Condens. Matter
24
,
455601
(
2012
).
42.
See supplementary material at http://dx.doi.org/10.1063/1.4893330 for the visualized crystal structure of CTO and MTO along with the complete crystallographic phase transition occur at x = 0.5.

Supplementary Material

You do not currently have access to this content.