We have fabricated graphene spin-valve devices utilizing scalable materials made from chemical vapor deposition (CVD). Both the spin-transporting graphene and the tunnel barrier material are CVD-grown. The tunnel barrier is realized by Hexagonal boron nitride, used either as a monolayer or bilayer and placed over the graphene. Spin transport experiments were performed using ferromagnetic contacts deposited onto the barrier. We find that spin injection is still greatly suppressed in devices with a monolayer tunneling barrier due to resistance mismatch. This is, however, not the case for devices with bilayer barriers. For those devices, a spin relaxation time of ∼260 ps intrinsic to the CVD graphene material is deduced. This time scale is comparable to those reported for exfoliated graphene, suggesting that this CVD approach is promising for spintronic applications which require scalable materials.

1.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
Y.
Zhang
,
S. V.
Dubonos
,
I. V.
Grigorieva
, and
A. A.
Girsov
, “
Electric field effect in atomically thin carbon films
,”
Science
306
,
666
(
2004
).
2.
L.
Wang
,
I.
Meric
,
P. Y.
Huang
,
Q.
Gao
,
Y.
Gao
,
H.
Tran
,
T.
Taniguchi
,
K.
Watanabe
,
L. M.
Campos
,
D. A.
Muller
,
J.
Guo
,
P.
Kim
,
J.
Hone
,
K. L.
Shepard
, and
C. R.
Dean
, “
One-dimensional electrical contact to a two-dimensional material
,”
Science
342
,
614
(
2013
).
3.
P.
Seneor
,
B.
Dlubak
,
M.-B.
Martin
,
A.
Anane
,
H.
Jaffres
, and
A.
Fert
, “
Spintronics with graphene
,”
MRS Bull.
37
,
1245
(
2012
).
4.
B.
Dlubak
,
M.-B.
Martin
,
C.
Deranlot
,
B.
Servet
,
S.
Xavier
,
R.
Mattana
,
M.
Sprinkle
,
C.
Berger
,
W. A. De
Heer
,
F.
Petroff
,
A.
Anane
,
P.
Seneor
, and
A.
Fert
, “
Highly efficient spin transport in epitaxial graphene on SiC
,”
Nat. Phys.
8
,
557
(
2012
).
5.
A.
Dankert
,
M. V.
Kamalakar
,
J.
Bergsten
, and
S. P.
Dash
, “
Spin transport and precession in graphene measured by nonlocal and three-terminal methods
,”
Appl. Phys. Lett.
104
,
192403
(
2014
).
6.
B.
Birkner
,
D.
Pachniowski
,
A.
Sandner
,
M.
Ostler
,
T.
Seyller
,
J.
Fabian
,
M.
Ciorga
,
D.
Weiss
, and
J.
Eroms
, “
Annealing-induced magnetic moments detected by spin precession measurements in epitaxial graphene on SiC
,”
Phys. Rev. B
87
,
081405(R)
(
2013
).
7.
C.
Volk
,
C.
Neumann
,
S.
Kazarski
,
S.
Fringes
,
S.
Engels
,
F.
Haupt
,
A.
Müller
, and
C.
Stampfer
, “
Probing relaxation times in graphene quantum dots
,”
Nat. Commun.
4
,
1753
(
2013
).
8.
H.
Idzuchi
,
Y.
Fukuma
,
S.
Takahashi
,
S.
Maekawa
, and
Y.
Otani
, “
Effect of anisotropic spin absorption on the Hanle effect in lateral spin valves
,”
Phys. Rev. B
89
,
081308(R)
(
2014
).
9.
N.
Tombros
,
C.
Jozsa
,
M.
Popinciuc
,
H. T.
Jonkman
, and
B. J.
van Wees
, “
Electronic spin transport and spin precession in single graphene layers at room temperature
,”
Nature
448
,
571
(
2007
).
10.
M.
Popinciuc
,
C.
Józsa
,
P. J.
Zomer
,
N.
Tombros
,
A.
Veligura
,
H. T.
Jonkman
, and
B. J.
van Wees
, “
Electronic spin transport in graphene field-effect transistors
,”
Phys. Rev. B
80
,
214427
(
2009
).
11.
W.
Han
and
R. K.
Kawakami
, “
Spin relaxation in single-layer and bilayer graphene
,”
Phys. Rev. Lett.
107
,
047207
(
2011
).
12.
T.-Y.
Yang
,
J.
Balakrishnan
,
F.
Volmer
,
A.
Avsar
,
M.
Jaiswal
,
J.
Samm
,
S. R.
Ali
,
A.
Pachoud
,
M.
Zeng
,
M.
Popinciuc
,
G.
Güntherodt
,
B.
Beschoten
, and
B.
Özyilmaz
, “
Observation of long spin-relaxation times in bilayer graphene at room temperature
,”
Phys. Rev. Lett.
107
,
047206
(
2011
).
13.
M.
Drögeler
,
F.
Volmer
,
M.
Wolter
,
B.
Terrés
,
K.
Watanabe
,
T.
Taniguchi
,
G.
Gütherodt
,
C.
Stampfer
, and
B.
Beschoten
, “
Nanosecond spin lifetimes in single- and few-layer graphene-hBN heterostructures at room temperature
,” e-print arXiv:1406.2439.
14.
P. J.
Zomer
,
M. H. D.
Guimarães
,
N.
Tombros
, and
B. J.
van Wees
, “
Long-distance spin transport in high-mobility graphene on hexagonal boron nitride
,”
Phys. Rev. B
86
,
161416(R)
(
2012
).
15.
B.
Dlubak
,
P. R.
Kidambi
,
R. S.
Weatherup
,
S.
Hofmann
, and
J.
Robertson
, “
Substrate-assisted nucleation of ultra-thin dielectric layers on graphene by atomic layer deposition
,”
Appl. Phys. Lett.
100
,
173113
(
2012
).
16.
M. H. D.
Guimarães
,
A.
Veligura
,
P. J.
Zomer
,
T.
Maassen
,
I. J.
Vera-Marun
,
N.
Tombros
, and
B. J.
van Wees
, “
Spin transport in high-quality suspended graphene devices
,”
Nano Lett.
12
,
3512
(
2012
).
17.
X. S.
Li
,
W. W.
Cai
,
J.
An
,
S.
Kim
,
J.
Nah
,
D. X.
Yang
,
R.
Piner
,
A.
Velamakanni
,
I.
Jung
,
E.
Tutuc
,
S. K.
Banerjee
,
L.
Colombo
, and
R. S.
Ruoff
, “
Large-area synthesis of high-quality and uniform graphene films on copper foils
,”
Science
324
,
1312
(
2009
).
18.
A.
Avsar
,
T.
Yang
,
S.
Bae
,
J.
Balakrishnan
,
F.
Volmer
,
M.
Jaiswal
,
Z.
Yi
,
S. R.
Ali
,
G.
Guüntherodt
,
B. H.
Hong
,
B.
Beschoten
, and
B.
Özyilmaz
, “
Toward wafer scale fabrication of graphene based spin valve devices
,”
Nano Lett.
11
,
2363
(
2011
).
19.
E.
Sosenko
,
H.
Wei
, and
V.
Aji
, “
Effect of contacts on spin lifetime measurements in graphene
,”
Phys. Rev. B
89
,
245436
(
2014
).
20.
W. H.
Wang
,
W.
Han
,
K.
Pi
,
K. M.
McCreary
,
F.
Miao
,
W.
Bao
,
C. N.
Lau
, and
R. K.
Kawakami
, “
Growth of atomically smooth MgO films on graphene by molecular beam epitaxy
,”
Appl. Phys. Lett.
93
,
183107
(
2008
).
21.
J. A.
Robinson
,
M.
LaBella
,
K. A.
Trumbull
,
X.
Weng
,
R.
Cavelero
,
T.
Daniels
,
Z.
Hughes
,
M.
Hollander
,
M.
Fanton
, and
D.
Snyder
, “
Epitaxial graphene materials integration: Effects of dielectric overlayers on structural and electronic properties
,”
ACS Nano
4
,
2667
(
2010
).
22.
K. S.
Novoselov
,
D.
Jiang
,
F.
Schedin
,
T. J.
Booth
,
V. V.
Khotkevich
,
S. V.
Morozov
, and
A. K.
Geim
, “
Two-dimensional atomic crystals
,”
Proc. Natl. Acad. Sci. U.S.A.
102
,
10451
(
2005
).
23.
L.
Britnell
,
R. V.
Gorbachev
,
R.
Jalil
,
B. D.
Belle
,
F.
Schedin
,
M. I.
Katsnelson
,
L.
Eaves
,
S. V.
Morozov
,
A. S.
Mayorov
,
N. M. R.
Peres
,
A. H. Castro
Neto
,
J.
Leist
,
A. K.
Geim
,
L. A.
Ponomarenko
, and
K. S.
Novoselov
, “
Electron tunneling through ultrathin boron nitride crystalline barriers
,”
Nano Lett.
12
,
1707
(
2012
).
24.
I.
Meric
,
C. R.
Dean
,
N.
Petrone
,
L.
Wang
,
J.
Hone
,
P.
Kim
, and
K. L.
Shepard
, “
Graphene field-effect transistors based on boron nitride dielectrics
,”
Proc. IEEE
101
,
1609
(
2013
).
25.
T.
Yamaguchi
,
Y.
Inoue
,
S.
Masubuchi
,
S.
Morikawa
,
M.
Onuki
,
K.
Watanabe
,
T.
Taniguchi
,
R.
Moriya
, and
T.
Machida
, “
Electrical spin injection into graphene through monolayer hexagonal boron nitride
,”
Appl. Phys. Express
6
,
073001
(
2013
).
26.
W.
Fu
,
C.
Nef
,
O.
Knopfmacher
,
A.
Tarasov
,
M.
Weiss
,
M.
Calame
, and
C.
Schönenberger
, “
Graphene transistors are insensitive to pH changes in solution
,”
Nano Lett.
11
,
3597
(
2011
).
27.
See https://graphene-supermarket.com/ for Single layer h-BN (Boron Nitride) film grown on copper foil.
28.
M.
Johnson
and
R. H.
Silsbee
, “
Interfacial charge-spin coupling: Injection and detection of spin magnetization in metals
,”
Phys. Rev. Lett.
55
,
1790
(
1985
).
29.
P. C.
van Son
,
H.
van Kempen
, and
P.
Wyder
, “
Boundary resistance of the ferromagnetic-nonferromagnetic metal interface
,”
Phys. Rev. Lett.
58
,
2271
(
1987
).
30.
F. J.
Jedema
,
H. B.
Heersche
,
A. T.
Filip
,
J. J. A.
Baselmans
, and
B. J.
van Wees
, “
Electrical detection of spin precession in a metallic mesoscopic spin valve
,”
Nature
416
,
713
(
2002
).
31.
H.
Aurich
,
A.
Baumgartner
,
F.
Freitag
,
A.
Eichler
,
J.
Trbovic
, and
C.
Schönenberger
, “
Permalloy-based carbon nanotube spin-valve
,”
Appl. Phys. Lett.
97
,
153116
(
2010
).
32.
H.
Jaffrès
,
J.-M.
George
, and
A.
Fert
, “
Spin transport in multiterminal devices: Large spin signals in devices with confined geometry
,”
Phys. Rev. B
82
,
140408(R)
(
2010
).
33.
M. Venkata
Kamalakar
,
A.
Dankert
,
J.
Bergsten
,
T.
Ive
, and
S. P.
Dash
, “
Enhanced tunnel spin injection into graphene using chemical vapor deposited hexagonal boron nitride
,” e-print arXiv:1406.5827.
You do not currently have access to this content.