Amorphous (a-)Si-based materials always attracted attention of the scientific community, especially after their use in commercial devices like solar cells and thin film transistors in the 1980s. In addition to their technological importance, the study of a-Si-based materials also present some interesting theoretical-practical challenges. Their crystallization as induced by metal species is one example, which is expected to influence the development of electronic-photovoltaic devices. In fact, the amorphous-to-crystalline transformation of the a-SiAl system has been successfully applied to produce solar cells suggesting that further improvements can be achieved. Stimulated by these facts, this work presents a comprehensive study of the a-SiAl system. The samples, with Al contents in the ∼0−15 at. % range, were made in the form of thin films and were characterized by different spectroscopic techniques. The experimental results indicated that: (a) increasing amounts of Al changed both the atomic structure and the optical properties of the samples; (b) thermal annealing induced the crystallization of the samples at temperatures that depend on the Al concentration; and (c) the crystallization process was also influenced by the annealing duration and the structural disorder of the samples. All of these aspects were addressed in view of the existing models of the a-Si crystallization, which were also discussed to some extent. Finally, the ensemble of experimental results suggest an alternative method to produce cost-effective crystalline Si films with tunable structural-optical properties.

1.
R. A.
Street
,
Hydrogenated Amorphous Silicon
(
Cambridge University Press
,
Cambridge
,
1992
).
2.
Technology and Applications of Amorphous Silicon
, edited by
R. A.
Street
(
Springer
,
Berlin
,
2000
).
3.
N. A.
Blum
and
C.
Feldman
,
J. Non-Cryst. Solids
11
,
242
(
1972
).
4.
Z. I.
Alferov
,
V. N.
Abakumov
,
Y. V.
Kovalvhuk
,
G. V.
Ostrovskaya
,
E. L.
Portnoi
, and
V. B.
Smirnitskii
,
Sov. Tech. Semicond.
17
,
152
(
1983
).
5.
T.
Takamori
,
R.
Messier
, and
R.
Roy
,
Appl. Phys. Lett.
20
,
201
(
1972
).
6.
T.
Sameshima
and
K.
Ozaki
,
Jpn. J. Appl. Phys., Part 2
39
,
L651
(
2000
).
7.
F.
Oki
,
Y.
Ogawa
, and
Y.
Fujiki
,
Jpn. J. Appl. Phys.
8
,
1056
(
1969
).
8.
W.
Knaepen
,
C.
Detavernier
,
R. L. V.
Meirhaeghe
,
J. J.
Sweet
, and
C.
Lavoie
,
Thin Solid Films
516
,
4946
(
2008
).
9.
F. A.
Ferri
,
A. R.
Zanatta
, and
I.
Chambouleyron
,
J. Appl. Phys.
100
,
094311
(
2006
).
10.
W.
Fuhs
,
S.
Gall
,
B.
Rau
,
M.
Schmidt
, and
J.
Schneider
,
Sol. Energy
77
,
961
(
2004
).
11.
A. G.
Aberle
,
A.
Straub
,
P. I.
Widenborg
,
A. B.
Sproul
,
Y.
Huang
, and
P.
Campbell
,
Prog. Photovoltaics
13
,
37
(
2005
).
12.
I.
Gordon
,
L.
Carnel
,
D. V.
Gestel
,
G.
Beaucame
, and
J.
Poortmans
,
Prog. Photovoltaics
15
,
575
(
2007
).
13.
D. V.
Gestel
,
I.
Gordon
, and
J.
Poortmans
,
Sol. Energy Mater. Sol. Cells
119
,
261
(
2013
).
14.
S.
Gardelis
,
A. G.
Nassiopoulou
,
P.
Manousiadis
,
N.
Vouroutzis
, and
N.
Frangis
,
Appl. Phys. Lett.
103
,
241114
(
2013
).
15.
A.
Luque
,
J. Appl. Phys.
110
,
031301
(
2011
).
16.
M. A.
Green
,
K.
Emery
,
Y.
Hishikawa
,
W.
Warta
, and
E. D.
Dunlop
,
Prog. Photovoltaics
22
,
1
(
2014
).
17.
Thin Film Processes
, edited by
J. L.
Vossen
and
W.
Kern
(
Academic Press Inc.
,
New York
,
1978
).
18.
W. R.
Runyan
and
T. J.
Shaffner
,
Semiconductor Measurements and Instrumentation
(
McGraw-Hill
,
New York
,
1998
).
19.
See http://www.linkam.co.uk/ts1500-features/ for further technical details (sample size, temperature range, heating-cooling rate, etc.).
20.
O. S.
Heavens
,
Optical Properties of Thin Films
(
Dover
,
New York
1991
).
21.
C. T. M.
Ribeiro
,
F.
Alvarez
, and
A. R.
Zanatta
,
Appl. Phys. Lett.
81
,
1005
(
2002
).
22.
Light Scattering in Solids
, Topics in Applied Physics Vol. 8, edited by
M.
Cardona
(
Springer-Verlag
,
New York
,
1975
).
23.
J. E.
Smith
, Jr.
,
M. H.
Brodsky
,
B. L.
Crowder
,
M. I.
Nathan
, and
A.
Pinkzuk
,
Phys. Rev. Lett.
26
,
642
(
1971
).
24.
J. S.
Lannin
,
J. Non-Crystal. Solids
97&98
,
39
(
1987
).
25.
J. S.
Lannin
,
Mater. Today (July)
41
,
28
(
1988
).
26.
J. S.
Lannin
,
L. S.
Pilione
,
S. T.
Kshirsagar
,
R.
Messier
, and
R. C.
Ross
,
Phys. Rev. B
26
,
3506
(
1982
).
27.
P. A.
Temple
and
C. E.
Hathaway
,
Phys. Rev. B
7
,
3685
(
1973
).
28.
T. R.
Hart
,
R. L.
Aggarwal
, and
B.
Lax
,
Phys. Rev. B
1
,
638
(
1970
).
29.
R.
Tsu
and
J. G.
Hernandez
,
Appl. Phys. Lett.
41
,
1016
(
1982
).
30.
R.
Tsu
,
J. G.
Hernandez
,
S. S.
Chao
,
S. C.
Lee
, and
K.
Tanaka
,
Appl. Phys. Lett.
40
,
534
(
1982
).
31.
C.
Smit
,
R. A. C. M. M.
van Swaaij
,
H.
Donker
,
A. M. H. N.
Petit
,
W. M. M.
Kessels
, and
M. C. M.
van de Sanden
,
J. Appl. Phys.
94
,
3582
(
2003
).
32.
F. A.
Ferri
and
A. R.
Zanatta
,
J. Appl. Phys.
104
,
013534
(
2008
).
33.
See, for example,
D.
Kovalev
,
H.
Heckler
,
G.
Polisski
, and
F.
Kock
,
Phys. Status Solidi B
215
,
871
(
1999
).
34.
T. J.
Konno
and
R.
Sinclair
,
Mater. Chem. Phys.
35
,
99
(
1993
).
35.
O.
Nast
and
S. R.
Wenham
,
J. Appl. Phys.
88
,
124
(
2000
).
36.
Metal-Induced Crystallization: Fundamentals and Applications
, edited by
Z. M.
Wang
,
L. P. H.
Jeurgens
, and
E. J.
Mittemeijer
(
Pan Stanford Publishing
,
Singapore
,
2014
).
38.
A. R.
Zanatta
,
J. Phys. D: Appl. Phys.
42
,
025109
(
2009
).
39.
B. Y.
Tsaur
,
G. W.
Turner
, and
J. C. C.
Fan
,
Appl. Phys. Lett.
39
,
749
(
1981
).
You do not currently have access to this content.