Metal oxidation at high temperatures has long been a challenge in cermet solar thermal absorbers, which impedes the development of atmospherically stable, high-temperature, high-performance concentrated solar power (CSP) systems. In this work, we demonstrate solution-processed Ni nanochain-SiOx (x < 2) and Ni nanochain-SiO2 selective solar thermal absorbers that exhibit a strong anti-oxidation behavior up to 600 °C in air. The thermal stability is far superior to previously reported Ni nanoparticle-Al2O3 selective solar thermal absorbers, which readily oxidize at 450 °C. The SiOx (x < 2) and SiO2 matrices are derived from hydrogen silsesquioxane and tetraethyl orthosilicate precursors, respectively, which comprise Si-O cage-like structures and Si-O networks. Fourier transform infrared spectroscopy shows that the dissociation of Si-O cage-like structures and Si-O networks at high temperatures have enabled the formation of new bonds at the Ni/SiOx interface to passivate the surface of Ni nanoparticles and prevent oxidation. X-ray photoelectron spectroscopy and Raman spectroscopy demonstrate that the excess Si in the SiOx (x < 2) matrices reacts with Ni nanostructures to form silicides at the interfaces, which further improves the anti-oxidation properties. As a result, Ni-SiOx (x < 2) systems demonstrate better anti-oxidation performance than Ni-SiO2 systems. This oxidation-resistant Ni nanochain-SiOx (x < 2) cermet coating also exhibits excellent high-temperature optical performance, with a high solar absorptance of ∼90% and a low emittance ∼18% measured at 300 °C. These results open the door towards atmospheric stable, high temperature, high-performance solar selective absorber coatings processed by low-cost solution-chemical methods for future generations of CSP systems.

1.
J. A.
Duffie
and
W. A.
Beckman
,
Solar Engineering of Thermal Processes
, 3rd ed. (
John Wiley & Sons
,
2006
).
2.
C. E.
Kennedy
, “
Review of mid- to high temperature solar selective absorber materials
,”
National Renewable Energy Laboratory (NREL) Report, Washington, DC
,
2002
.
3.
C. M.
Lampert
,
Sol. Energy Mater.
1
,
319
(
1979
).
4.
P.
Spinelli
,
M.
Hebbink
,
R. de
Waele
,
L.
Black
,
F.
Lenzmann
, and
A.
Polman
,
Nano Lett.
11
,
1760
(
2011
).
5.
F.
Cao
,
K.
McEnaney
,
G.
Chen
, and
Z.
Ren
, “
A review of cermet-based spectrally selective solar absorbers
,”
Energy Environ. Sci.
7
,
1615
(
2014
).
6.
T.
Bostrom
,
E.
Wackelgard
, and
G.
Westin
,
Sol. Energy
74
,
497
(
2003
).
7.
N.
Selvakumar
and
H. C.
Barshilia
,
Sol. Energ. Mater. Sol. Cells
98
,
1
(
2012
).
8.
P. A.
Chernavskii
,
N. V.
Peskov
,
A. V.
Mugtasimov
, and
V. V.
Lunin
,
Russ. J. Phys. Chem. B
1
,
394
(
2007
).
9.
X. X.
Wang
,
H. F.
Li
,
X. B.
Yu
,
X. L.
Shi
, and
J. F.
Liu
,
Appl. Phys. Lett.
101
,
203109
(
2012
).
10.
M. A.
Farrokhzad
and
T. I.
Khan
,
Oxid. Met.
81
,
267
(
2014
).
11.
W. J.
Strydom
,
J. C.
Lombaard
, and
R.
Pretorius
,
Thin Solid Films
131
,
215
(
1985
).
12.
J. P.
Gambino
and
E. G.
Colgan
,
Mater. Chem. Phys.
52
,
99
(
1998
).
13.
C. C.
Yang
and
W. C.
Chen
,
J. Mater. Chem.
12
,
1138
(
2002
).
14.
C. M.
Hessel
,
E. J.
Henderson
, and
J. G. C.
Veinot
,
Chem. Mater.
18
,
6139
(
2006
).
15.
A.
Gungor
,
H.
Demirtas
,
I.
Atilgan
, and
M.
Yasar
, in
Proceedings of the International Iron and Steel
,
Karabuk
,
Turkey
, April, 2012, pp.
694
699
.
16.
B. E.
Deal
and
A. S.
Grove
,
J. Appl. Phys.
36
,
3770
(
1965
).
17.
Y.
Waseda
,
E.
Matsubara
, and
K.
Shinoda
,
X-ray Diffraction Crystallography
, 1st ed. (
Springer
,
2011
).
18.
C. G.
Windsor
and
R. N.
Sinclair
,
Acta Cryst. A
32
,
395
(
1976
).
19.
A.
Corrias
,
G.
Mountjoy
,
G.
Piccaluga
, and
S.
Solinas
,
J. Phys. Chem. B
103
,
10081
(
1999
).
20.
A. N.
Andriotis
,
M.
Menon
,
G. E.
Froudakis
,
Z.
Fthenakis
, and
J. E.
Lowther
,
Chem. Phys. Lett.
292
,
487
(
1998
).
21.
A. A.
Kumbhar
,
S. K.
Singh
, and
R. O.
Dusane
,
Thin Solid Films
501
,
329
(
2006
).
22.
T. S.
Chang
,
T.-C.
Chang
,
P.-T.
Liu
,
T.-S.
Chang
, and
F.-S.
Yeh
,
Thin Solid Films
498
,
70
(
2006
).
23.
Y.
Cao
,
L.
Nyborg
, and
U.
Jelvestam
,
Surf. Interface Anal.
41
,
471
(
2009
).
24.
M. A.
Peck
and
M. A.
Langell
,
Chem. Mater.
24
,
4483
(
2012
).
25.
S. K.
Donthu
,
D. Z.
Chi
,
S.
Tripathy
,
A. S. W.
Wong
, and
S. J.
Chua
, “
Micro-Raman spectroscopic investigation of NiSi films formed on BF+2-, B+-and non-implanted (100) Si substrates
,”
Appl. Phys. A
79
,
637
(
2004
).
26.
F. F.
Zhao
,
S. Y.
Chen
,
Z. X.
Shen
,
X. S.
Gao
,
J. Z.
Zheng
,
A. K.
See
, and
L. H.
Chan
,
J. Vac. Sci. Technol. B
21
,
862
(
2003
).
27.
P. S.
Lee
,
D.
Mangelinck
,
K. L.
Pey
,
Z. X.
Shen
,
J.
Ding
,
T.
Osipowicz
, and
A.
See
,
Electrochem. Solid State Lett.
3
,
153
(
2000
).
28.
H.
Raether
,
Surface Plasmon on Smooth and Rough Surface and Gratings
(
Springer-Verlag
,
Berlin
,
1986
).
You do not currently have access to this content.