The plasma formed in vacuum by UV nanosecond laser ablation of La0.4Ca0.6MnO3 in the fluence range of 0.8 to 1.9 J cm−2 using both Langmuir probe analysis and energy-resolved mass spectrometry has been studied. Mass spectrometry shows that the main positive ion species are Ca+, Mn+, La+, and LaO+. The Ca+ and Mn+ energy distributions are quite broad and lie in the 0–100 eV region, with the average energies increasing with laser fluence. In contrast, the La+ and LaO+ distributions are strongly peaked around 10 eV. The net time-of-arrival signal derived from the measured positive ion energy distributions is broadly consistent with the positive ion signal measured by the Langmuir probe. We also detected a significant number of O ions with energies in the range of 0 to 10 eV. The Langmuir probe was also used to measure the temporal variation of the electron density and temperature at 6 cm from the ablation target. In the period when O ions are found at this position, the plasma conditions are consistent with those required for significant negative oxygen ion formation, as revealed by studies on radio frequency excited oxygen plasma.

1.
D. H.
Lowndes
,
D. B.
Geohegan
,
A. A.
Puretzky
,
D. P.
Norton
, and
C. M.
Rouleau
,
Science
273
(
5277
),
898
903
(
1996
).
2.
P. R.
Willmott
and
J. R.
Huber
,
Rev. Mod. Phys.
72
(
1
),
315
328
(
2000
).
3.
S. A.
Chambers
,
Adv. Mater.
22
(
2
),
219
248
(
2010
).
4.
B.
Doggett
and
J. G.
Lunney
,
J. Appl. Phys.
105
(
3
),
033306
(
2009
).
5.
G.
Baraldi
,
A.
Perea
, and
C. N.
Afonso
,
J. Appl. Phys.
109
(
4
),
043302
(
2011
).
6.
I.
Weaver
,
G. W.
Martin
,
W. G.
Graham
,
T.
Morrow
, and
C. L. S.
Lewis
,
Rev. Sci. Instrum.
70
(
3
),
1801
1805
(
1999
).
7.
B.
Doggett
,
C.
Budtz-Joergensen
,
J. G.
Lunney
,
P.
Sheerin
, and
M. M.
Turner
,
Appl. Surf. Sci.
247
(
1–4
),
134
138
(
2005
).
8.
B.
Toftmann
,
J.
Schou
,
T. N.
Hansen
, and
J. G.
Lunney
,
Phys. Rev. Lett.
84
(
17
),
3998
4001
(
2000
).
9.
B.
Toftmann
,
J.
Schou
, and
J. G.
Lunney
,
Phys. Rev. B
67
(
10
),
104101
(
2003
).
10.
G.
Padmaja
,
A. V. R.
Kumar
,
V.
Vidyalal
,
P.
Radhakrishnan
,
V. P. N.
Nampoori
, and
C. P. G.
Vallabhan
,
J. Phys. D: Appl. Phys.
22
(
10
),
1558
(
1989
).
11.
C.
Aruta
,
S.
Amoruso
,
R.
Bruzzese
,
X.
Wang
,
D.
Maccariello
,
F. M.
Granozio
, and
U. S. di
Uccio
,
Appl. Phys. Lett.
97
(
25
),
252105
(
2010
).
12.
S.
Amoruso
,
C.
Aruta
,
R.
Bruzzese
,
X.
Wang
, and
U. S. di
Uccio
,
Appl. Phys. Lett.
98
(
10
),
101501
(
2011
).
13.
S.
Amoruso
,
J.
Schou
, and
J. G.
Lunney
,
Europhys. Lett.
76
(
3
),
436
(
2006
).
14.
A.
Sambri
,
S.
Amoruso
,
X.
Wang
,
M.
Radovic’
,
F. Miletto
Granozio
, and
R.
Bruzzese
,
Appl. Phys. Lett.
91
(
15
),
151501
(
2007
).
15.
S.
Amoruso
,
R.
Bruzzese
,
N.
Spinelli
,
R.
Velotta
,
M.
Vitiello
, and
X.
Wang
,
Phys. Rev. B
67
(
22
),
224503
(
2003
).
16.
G.
Epurescu
,
J.
Siegel
,
J.
Gonzalo
,
F. J.
Gordillo-Vazquez
, and
C. N.
Afonso
,
Appl. Phys. Lett.
87
(
21
),
211501
(
2005
).
17.
S.
Amoruso
,
C.
Aruta
,
R.
Bruzzese
,
D.
Maccariello
,
L.
Maritato
,
F. M.
Granozio
,
P.
Orgiani
,
U. Scotti di
Uccio
, and
X.
Wang
,
J. Appl. Phys.
108
(
4
),
043302
(
2010
).
18.
O.
Auciello
,
S.
Athavale
,
O. E.
Hankins
,
M.
Sito
,
A. F.
Schreiner
, and
N.
Biunno
,
Appl. Phys. Lett.
53
(
1
),
72
74
(
1988
).
19.
C.
Girault
,
D.
Damiani
,
C.
Champeaux
,
P.
Marchet
,
J. P.
Mercurio
,
J.
Aubreton
, and
A.
Catherinot
,
Appl. Phys. Lett.
56
(
15
),
1472
1474
(
1990
).
20.
C.
Girault
,
D.
Damiani
,
J.
Aubreton
, and
A.
Catherinot
,
Appl. Phys. Lett.
54
(
20
),
2035
2037
(
1989
).
21.
M.
Esposito
,
M.
Bator
,
M.
Dobeli
,
T.
Lippert
,
C. W.
Schneider
, and
A.
Wokaun
,
Appl. Phys. Lett.
99
(
19
),
191501
(
2011
).
22.
H.
Dachraoui
and
W.
Husinsky
,
Appl. Phys. Lett.
89
(
10
),
104102
(
2006
).
23.
N.
Chaoui
,
E.
Millon
, and
J. F.
Muller
,
Chem. Mater.
10
(
12
),
3888
3894
(
1998
).
24.
T.
Mathews
,
J. R.
Sellar
,
B. C.
Muddle
, and
P.
Manoravi
,
Chem. Mater.
12
(
4
),
917
922
(
2000
).
25.
J.
Chen
,
D.
Stender
,
M.
Bator
,
C. W.
Schneider
,
T.
Lippert
, and
A.
Wokaun
,
Appl. Surf. Sci.
278
,
317
320
(
2013
).
26.
T.
Venkatesan
,
X. D.
Wu
,
A.
Inam
,
Y.
Jeon
,
M.
Croft
,
E. W.
Chase
,
C. C.
Chang
,
J. B.
Wachtman
,
R. W.
Odom
,
F. R. di
Brozolo
, and
C. A.
Magee
,
Appl. Phys. Lett.
53
(
15
),
1431
1433
(
1988
).
27.
D. B.
Geohegan
and
A. A.
Puretzky
,
Appl. Surf. Sci.
96–98
,
131
138
(
1996
).
28.
S.
Amoruso
,
R.
Bruzzese
,
R.
Velotta
,
N.
Spinelli
,
M.
Vitiello
, and
X.
Wang
,
Appl. Surf. Sci.
248
(
1–4
),
45
49
(
2005
).
29.
B.
Thestrup
,
B.
Toftmann
,
J.
Schou
,
B.
Doggett
, and
J. G.
Lunney
,
Appl. Surf. Sci.
208–209
,
33
(
2003
).
30.
P. R.
Willmott
,
R.
Timm
, and
J. R.
Huber
,
J. Appl. Phys.
82
(
5
),
2082
2092
(
1997
).
31.
L.
Torrisi
,
F.
Caridi
,
D.
Margarone
, and
A.
Borrielli
,
Appl. Surf. Sci.
254
(
7
),
2090
2095
(
2008
).
32.
I. A.
Jon
,
J. G.-V.
Francisco
, and
M.
Roberto
,
Plasma Sources Sci. Technol.
21
(
1
),
015016
(
2012
).
33.
D.
Doria
,
A.
Lorusso
,
F.
Belloni
,
V.
Nassisi
,
L.
Torrisi
, and
S.
Gammino
,
Laser Part. Beams
22
(
4
),
461
467
(
2004
).
34.
X.
Wang
,
S.
Zhang
,
X.
Cheng
,
E.
Zhu
,
W.
Hang
, and
B.
Huang
,
Spectrochim. Acta, Part B
99
,
101
114
(
2014
).
35.
See http://www.hidenanalytical.com/ for details about the EQS analytical system.
36.
E.
Stoffels
,
W. W.
Stoffels
,
D.
Vender
,
M.
Kando
,
G. M. W.
Kroesen
, and
F. J. de
Hoog
,
Phys. Rev. E
51
(
3
),
2425
2435
(
1995
).
You do not currently have access to this content.